基于pandas的数据分析之数据类型转化踩坑总结

本文探讨了在使用Pandas进行数据分析时遇到的数据类型转化问题,包括因数据缺失导致的DataFrame中int转float以及数值类型字符串在csv加载时转为numeric。详细分析了这些问题的原因,并提供了处理建议,旨在帮助提升数据处理的准确性和有效性。
摘要由CSDN通过智能技术生成

环境依赖:
MySQL 5.7.17
Python 2.7
MySQL-python 1.2.5
pandas 0.18.1

数据类型转化从以下两个方面讨论并分析:

  1. 由于数据缺失导致DataFrame中int转float型
  2. 由于数值类型字符串导致从csv加载到DataFrame时String转numeric

一、由于数据缺失导致DataFrame中int转float型

问题描述

基于Python将MySQL的表结构转化为Pandas的DataFrame时,出现如下问题:
a)age列原本为Int类型,但是在DataFrame中转化为Float类型
b)对于SQL中的None值在DataFrame里有多种表示方式。

数据源信息如下所示:
图- MySQL表数据展示
Mysql表字段属性
在DataFrame中展示效果如下:
表数据在DataFrame中的展示

原因分析

通过查阅官方文档得知࿰

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值