BlockManager是一个嵌入在 Spark 中的 key-value型分布式存储系统,也是Master-Slave 结构的,RDD-cache、 shuffle-output、broadcast 等的实现都是基于BlockManager来实现的:
- shuffle 的过程中使用 BlockManager 作为数据的中转站
- 将广播变量发送到 Executor 时, broadcast 底层使用的数据存储层
- 如果对一个 RDD 进行了cache,CacheManager也是把数据放在了BlockManager 中, 后续 Task 运行的时候可以直接从 CacheManager 中获取到缓存的数据 ,不用再从头计算
BlockManager
也是分布式结构,在
Driver
和所有
Executor
上都会有BlockManager。每个节点上存储的
block
信息都会汇报给
Driver
端的
BlockManager Master作统一管理,
BlockManager
对外提供
get
和
set
数据接口,可将数据存储在Memory、
Disk
、
Off-heap
。
Driver
上有
BlockManager Master
,负责对各个节点上的
BlockManager
内部管理的数据的元数据进行维护,比如 block
的增删改等操作,都在这里维护好元数据的变更。
Driver的组件为BlockManager Master
,负责:
- 各节点上BlockManager内部管理数据的元数据进行维护,如 block 的增、删、改、查等操作。
- 只要 BlockManager 执行了数据增、删、改操作,那么必须将 Block 的BlockStatus 上报到BlockManager Master,BlockManager Master会对元数据进行维护。
BlockManager
运行在所有的节点上,包括所有
Driver
和
Executor
上:
- BlockManager对本地和远程提供一致的 get 和 set 数据块接口, BlockManager本身使用不同的存储方式来存储这些数据,包括memory、disk、off-heap
- BlockManager负责Spark底层数据存储与管理,Driver和Executor的所有数据都由对应的BlockManager进行管理
- BlockManager创建后,立即向 BlockManager Master进行注册,此时BlockManager Master会为其创建对应的BlockManagerInfo
- BlockManager中有3个非常重要的组件:
DiskStore:负责对磁盘数据进行读写
MemoryStore:负责对内存数据进行读写
BlockTransferService:负责建立到远程其他节点BlockManager的连接,负责对远程其他节点的BlockManager的数据进行读写 -
使用BlockManager进行写操作时,如RDD运行过程中的中间数据,或者执行persist操作,会优先将数据写入内存中。如果内存大小不够,将内存中的部分数据写入磁盘;如果persist指定了要replica,会使用BlockTransferService将数据复制一份到其他节点的BlockManager上去
-
使用 BlockManager 进行读操作时,如 Shuffle Read 操作,如果能从本地读取,就利用 DiskStore 或MemoryStore 从本地读取数据;如果本地没有数据,就利用 BlockTransferService 从远程 BlockManager 读取数据