[spark] BlockManager 解析

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/UUfFO/article/details/78572472

概述

BlockManager是spark自己的存储系统,RDD-Cache、 Shuffle-output、broadcast 等的实现都是基于BlockManager来实现的,BlockManager也是分布式结构,在driver和所有executor上都会有blockmanager节点,每个节点上存储的block信息都会汇报给driver端的blockManagerMaster作统一管理,BlockManager对外提供get和set数据接口,可将数据存储在memory, disk, off-heap。

blockManager的创建与注册

blockManagerMaster和blockManager都是在构造SparkEnv的时候创建的,Driver端是创建SparkContext的时候创建SparkEnv,Executor端的SparkEnv是在其守护进程CoarseGrainedExecutorBackend创建的时候创建的,下面看blockManager是怎么在sparkEnv中创建的:

// get&put 远程block的时候就是通过blockTransferService 完成的
val blockTransferService =
      new NettyBlockTransferService(conf, securityManager, bindAddress, advertiseAddress,
        blockManagerPort, numUsableCores)

 val blockManagerMaster = new BlockManagerMaster(registerOrLookupEndpoint(
      BlockManagerMaster.DRIVER_ENDPOINT_NAME,
      new BlockManagerMasterEndpoint(rpcEnv, isLocal, conf, listenerBus)),
      conf, isDriver)

    // NB: blockManager is not valid until initialize() is called later.
    val blockManager = new BlockManager(executorId, rpcEnv, blockManagerMaster,
      serializerManager, conf, memoryManager, mapOutputTracker, shuffleManager,
      blockTransferService, securityManager, numUsableCores)

构造blockManagerMaster的时候在Driver端是创建了一个BlockManagerMasterEndpoint并注册到了rpcEnv中,而在executor端是获取到了 Driver端BlockManagerMasterEndpoint的引用 BlockManagerMasterRef,以便后面的通信。随后都创建了自己blockManager,创建blockManager的时候都创建了BlockManagerSlaveEndpoint。

blockManager创建后还不能直接使用,接着都会调用blockManager的initialize方法,通过与master通信向master进行注册,master收到消息后会将blockManager的信息存到blockManagerInfo的map中,key为blockManagerId(保存着executorId、host、post等信息),value为BlockManagerInfo(保存着具体的block状态信息及 BlockManagerSlaveEndpoint 的引用 ),注册完后就可以真正干活了。

master与slave间的消息传递

slave -> master

    // slave向master注册,会保存在master的blockManagerInfo中
    case RegisterBlockManager(blockManagerId, maxMemSize, slaveEndpoint) =>
      context.reply(register(blockManagerId, maxMemSize, slaveEndpoint))

    // 一个Block的更新消息,BlockId作为一个Block的唯一标识,会保存Block所在的节点和位置关系,以及block 存储级别,大小 占用内存和磁盘大小
    case _updateBlockInfo @
        UpdateBlockInfo(blockManagerId, blockId, storageLevel, deserializedSize, size) =>
      context.reply(updateBlockInfo(blockManagerId, blockId, storageLevel, deserializedSize, size))
      listenerBus.post(SparkListenerBlockUpdated(BlockUpdatedInfo(_updateBlockInfo)))

    // 用于获取指定 blockId 的 block 所在的 BlockManagerId 列表
    case GetLocations(blockId) =>
      context.reply(getLocations(blockId))

    // 获取多个Block所在 的位置,位置中会反映Block位于哪个 executor, host 和端口
    case GetLocationsMultipleBlockIds(blockIds) =>
      context.reply(getLocationsMultipleBlockIds(blockIds))

    // 一个block有可能在多个节点上存在,返回一个节点列表
    case GetPeers(blockManagerId) =>
      context.reply(getPeers(blockManagerId))

    // 根据BlockId,获取所在executorEndpointRef 也就是 BlockManagerSlaveEndpoint的引用
    case GetExecutorEndpointRef(executorId) =>
      context.reply(getExecutorEndpointRef(executorId))

    // 获取所有节点上的BlockManager的最大内存和剩余内存
    case GetMemoryStatus =>
      context.reply(memoryStatus)

    // 获取所有节点上的BlockManager的最大磁盘空间和剩余磁盘空间
    case GetStorageStatus =>
      context.reply(storageStatus)

    // 获取一个Block的状态信息,位置,占用内存和磁盘大小
    case GetBlockStatus(blockId, askSlaves) =>
      context.reply(blockStatus(blockId, askSlaves))

    // 获取一个Block的存储级别和所占内存和磁盘大小
    case GetMatchingBlockIds(filter, askSlaves) =>
      context.reply(getMatchingBlockIds(filter, askSlaves))

    // 删除Rdd对应的Block数据
    case RemoveRdd(rddId) =>
      context.reply(removeRdd(rddId))

    // 删除 shuffleId对应的BlockId的Block
    case RemoveShuffle(shuffleId) =>
      context.reply(removeShuffle(shuffleId))

    // 删除Broadcast对应的Block数据
    case RemoveBroadcast(broadcastId, removeFromDriver) =>
      context.reply(removeBroadcast(broadcastId, removeFromDriver))

    // 删除一个Block数据,会找到数据所在的slave,然后向slave发送一个删除消息
    case RemoveBlock(blockId) =>
      removeBlockFromWorkers(blockId)
      context.reply(true)

    // 从BlockManagerInfo中删除一个BlockManager, 并且删除这个 BlockManager上的所有的Blocks
    case RemoveExecutor(execId) =>
      removeExecutor(execId)
      context.reply(true)

    // 用于停止 driver 或 executor 端的 BlockManager
    case StopBlockManagerMaster =>
      context.reply(true)
      stop()

    // slave 发送心跳给 master , 证明自己还活着
    case BlockManagerHeartbeat(blockManagerId) =>
      context.reply(heartbeatReceived(blockManagerId))

    // 用于检查 executor 是否有缓存 blocks(广播变量的 blocks 不作考虑,因为广播变量的 block 不会汇报给 Master)
    case HasCachedBlocks(executorId) =>
      blockManagerIdByExecutor.get(executorId) match {
        case Some(bm) =>
          if (blockManagerInfo.contains(bm)) {
            val bmInfo = blockManagerInfo(bm)
            context.reply(bmInfo.cachedBlocks.nonEmpty)
          } else {
            context.reply(false)
          }
        case None => context.reply(false)
      }

master -> slave

    // slave删除自己BlockManager上的一个Block
    case RemoveBlock(blockId) =>
      doAsync[Boolean]("removing block " + blockId, context) {
        blockManager.removeBlock(blockId)
        true
      }

    // 删除Rdd对应的Block数据
    case RemoveRdd(rddId) =>
      doAsync[Int]("removing RDD " + rddId, context) {
        blockManager.removeRdd(rddId)
      }

    // 删除 shuffleId对应的BlockId的Block
    case RemoveShuffle(shuffleId) =>
      doAsync[Boolean]("removing shuffle " + shuffleId, context) {
        if (mapOutputTracker != null) {
          mapOutputTracker.unregisterShuffle(shuffleId)
        }
        SparkEnv.get.shuffleManager.unregisterShuffle(shuffleId)
      }

    // 删除 BroadcastId对应的BlockId的Block
    case RemoveBroadcast(broadcastId, _) =>
      doAsync[Int]("removing broadcast " + broadcastId, context) {
        blockManager.removeBroadcast(broadcastId, tellMaster = true)
      }

    // 获取一个Block的存储级别和所占内存和磁盘大小
    case GetBlockStatus(blockId, _) =>
      context.reply(blockManager.getStatus(blockId))

    case GetMatchingBlockIds(filter, _) =>
      context.reply(blockManager.getMatchingBlockIds(filter))

    case TriggerThreadDump =>
      context.reply(Utils.getThreadDump())

存储

在blockManager被创建的时候创建了MemoryStore和DiskStore两个对象用以存取block。

  private[spark] val memoryStore =
    new MemoryStore(conf, blockInfoManager, serializerManager, memoryManager, this)
  private[spark] val diskStore = new DiskStore(conf, diskBlockManager)
  memoryManager.setMemoryStore(memoryStore)

DiskStore

diskSore就是基于磁盘来存储数据的,diskStore有一个成员DiskBlockManager,其主要作用就是逻辑block和磁盘block的映射,block的blockId对应磁盘文件中的一个文件。

def getFile(filename: String): File = {
    // Figure out which local directory it hashes to, and which subdirectory in that
    val hash = Utils.nonNegativeHash(filename)
    val dirId = hash % localDirs.length
    val subDirId = (hash / localDirs.length) % subDirsPerLocalDir

    // Create the subdirectory if it doesn't already exist
    val subDir = subDirs(dirId).synchronized {
      val old = subDirs(dirId)(subDirId)
      if (old != null) {
        old
      } else {
        val newDir = new File(localDirs(dirId), "%02x".format(subDirId))
        if (!newDir.exists() && !newDir.mkdir()) {
          throw new IOException(s"Failed to create local dir in $newDir.")
        }
        subDirs(dirId)(subDirId) = newDir
        newDir
      }
    }

    new File(subDir, filename)
  }

通过blockId的hash值和localDirs的个数求余来决定在哪个localDir下创建文件,这里的localDirs是可配置的多个目录,可通过SPARK_LOCAL_DIRS进行设置,多个目录以逗号分割,配置多个目录的目的是可分散磁盘的读写压力。另外spark在每个localDir中创建了64(可通过spark.diskStore.subDirectories配置)个子目录来分散文件,子文件的选择也是通过blockId的hash值来计算的。

在diskStore中的putButes方法就是真正写数据到磁盘的方法:

def putBytes(blockId: BlockId, bytes: ChunkedByteBuffer): Unit = {
    put(blockId) { fileOutputStream =>
      val channel = fileOutputStream.getChannel
      Utils.tryWithSafeFinally {
        bytes.writeFully(channel)
      } {
        channel.close()
      }
    }
  }
def put(blockId: BlockId)(writeFunc: FileOutputStream => Unit): Unit = {
    if (contains(blockId)) {
      throw new IllegalStateException(s"Block $blockId is already present in the disk store")
    }
    logDebug(s"Attempting to put block $blockId")
    val startTime = System.currentTimeMillis
    val file = diskManager.getFile(blockId)
    val fileOutputStream = new FileOutputStream(file)
    var threwException: Boolean = true
    try {
      writeFunc(fileOutputStream)
      threwException = false
    } finally {
      try {
        Closeables.close(fileOutputStream, threwException)
      } finally {
         if (threwException) {
          remove(blockId)
        }
      }
    }
    val finishTime = System.currentTimeMillis
    logDebug("Block %s stored as %s file on disk in %d ms".format(
      file.getName,
      Utils.bytesToString(file.length()),
      finishTime - startTime))
  }

接收一个blockId和要写的字节数据,通过blockId获取到要写的具体文件并得到对应的文件输出流,将该bytes直接write这个流里,完成写文件。

diskStore还有一个重要的方法getBytes方法,即读磁盘文件的方法,通过blockId获取到对应的磁盘文件,以字节 buffer 的形式返回。

此外还有查询blockId对应文件的大小、是否存在blockId对应的文件、删除blockId对应的文件等方法。

MemoryStore

memorySore是基于JVM的堆内存来存储数据,MemoryStore内部维护了一个hash map来管理所有的block,以block id为key将block存放到hash map中。

private val entries = new LinkedHashMap[BlockId, MemoryEntry[_]](32, 0.75f, true)

基于内存存储不像存磁盘那么简单,毕竟内存非常有限,memorySore有个专门管理内存的成员memoryManager,spark的内存管理详情参考内存管理 MemoryManager 解析

放内存就意味着要有足够的内存来放,不然会导致OOM。

  • 若blockId 对应的数据以bytes数据的方式存放,则可根据其size大小来申请内存存放,若不能申请足够的内存则说明放入内存失败。对应的方法是:

    putBytes[T: ClassTag](blockId: BlockId, size: Long, memoryMode: MemoryMode, _bytes: () => ChunkedByteBuffer): Boolean
  • 若blockId 对应的数据通过迭代器的方式写入内存,则无法提前知道其数据大小,这里的做法是逐步展开迭代器来检查是否还有空余内存。如果迭代器顺利展开了,那么用来展开迭代器的内存直接转换为存储内存,而不用再去分配内存来存储该 block 数据。如果未能完全开展迭代器,则返回一个包含 block 数据的迭代器,其对应的数据是由已经展开的数据和未展开的迭代器组成,在未能成功展开的情况下说明存储内存失败,将会根据存储级别判断是否需要存到磁盘,对应的方法是:

    putIteratorAsValues[T](blockId: BlockId, values: Iterator[T], classTag: ClassTag[T]): Either[PartiallyUnrolledIterator[T], Long]
    
    putIteratorAsBytes[T](blockId: BlockId, values: Iterator[T], classTag: ClassTag[T], memoryMode: MemoryMode): Either[PartiallySerializedBlock[T], Long]

通过memoryStore读数据也有两种方式,一个是以字节buffer的形式返回指定的block数据,另一个是以迭代器的形式返回指定的block数据。

blockManager对外服务

blockManager典型的几个应用场景如下:

  • spark shuffle过程的数据就是通过blockManager来存储的。
  • spark broadcast 将task调度到多个executor的时候,broadCast 底层使用的数据存储就是blockManager。
  • 对一个rdd进行cache的时候,cache的数据就是通过blockManager来存放的。
  • spark streaming 一个 ReceiverInputDStream 接受到的数据也是先放在 BlockManager 中, 然后封装为一个 BlockRdd 进行下一步运算的。

参考

展开阅读全文

没有更多推荐了,返回首页