Eigenvalue Decomposition of Symmetric Matrices(convex)

Eigenvalue Decomposition of Symmetric Matrices


Symmetric matrices are square with elements that mirror each other across the diagonal. They can be used to describe for example graphs with undirected, weighted edges between the nodes; or distance matrices (between say cities), and a host of other applications. Symmetric matrices are also important in optimization, as they are closely related to quadratic functions.

A fundamental theorem, the spectral theorem, shows that we can decompose any symmetric matrix as a three-term product of matrices, involving anorthogonal transformation and a diagonal matrix. The theorem has a direct implication for quadratic functions: it allows a to decompose any quadratic function into a weighted sum of squared linear functions involving vectors that are mutually orthogonal. The weights are called the eigenvalues of the symmetric matrix.

The spectral theorem allows in particular to determine when a given quadratic function is ‘‘bowl-shaped’’, that is,convex. The spectral theorem also allows to find directions of maximal variance within a data set. Such directions are useful to visualize high-dimensional data points in two or three dimensions. This is the basis of a visualization method known as principal component analysis (PCA).

From: https://inst.eecs.berkeley.edu/~ee127a/book/login/l_sym_main.html


Spectral theorem

An important result of linear algebra, called the spectral theorem, or symmetric eigenvalue decomposition (SED) theorem, states that for any symmetric matrix, there are exactly n (possibly not distinct) eigenvalues, and they are all real; further, that the associated eigenvectors can be chosen so as to form an orthonormal basis. The result offers a simple way to decompose the symmetric matrix as a product of simple transformations.

Theorem: Symmetric eigenvalue decomposition

We can decompose any symmetric matrix A in mathbf{S}^n with the symmetric eigenvalue decomposition (SED) 
 A = sum_{i=1}^n lambda_i u_iu_i^T  = U Lambda U^T, ;; Lambda = mbox{bf diag}(lambda_1,ldots,lambda_n) .  
where the matrix of U := [u_1 , ldots, u_n] is orthogonal (that is, U^TU=UU^T = I_n), and contains the eigenvectors of A, while the diagonal matrix Lambda contains the eigenvalues of A.

Here is a proof. The SED provides a decomposition of the matrix in simple terms, namely dyads.

We check that in the SED above, the scalars lambda_i are the eigenvalues, and u_i’s are associated eigenvectors, since 
 Au_j = sum_{i=1}^n lambda_i u_iu_i^Tu_j = lambda_j u_j, ;; j=1,ldots,n.  

The eigenvalue decomposition of a symmetric matrix can be efficiently computed with standard software, in time that grows proportionately to its dimension n as n^3. Here is the matlab syntax, where the first line ensure that matlab knows that the matrix A is exactly symmetric.

From: https://inst.eecs.berkeley.edu/~ee127a/book/login/l_sym_sed.html
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
使用 JavaScript 编写的记忆游戏(附源代码)   项目:JavaScript 记忆游戏(附源代码) 记忆检查游戏是一个使用 HTML5、CSS 和 JavaScript 开发的简单项目。这个游戏是关于测试你的短期 记忆技能。玩这个游戏 时,一系列图像会出现在一个盒子形状的区域中 。玩家必须找到两个相同的图像并单击它们以使它们消失。 如何运行游戏? 记忆游戏项目仅包含 HTML、CSS 和 JavaScript。谈到此游戏的功能,用户必须单击两个相同的图像才能使它们消失。 点击卡片或按下键盘键,通过 2 乘 2 旋转来重建鸟儿对,并发现隐藏在下面的图像! 如果翻开的牌面相同(一对),您就赢了,并且该对牌将从游戏中消失! 否则,卡片会自动翻面朝下,您需要重新尝试! 该游戏包含大量的 javascript 以确保游戏正常运行。 如何运行该项目? 要运行此游戏,您不需要任何类型的本地服务器,但需要浏览器。我们建议您使用现代浏览器,如 Google Chrome 和 Mozilla Firefox, 以获得更好、更优化的游戏体验。要玩游戏,首先,通过单击 memorygame-index.html 文件在浏览器中打开游戏。 演示: 该项目为国外大神项目,可以作为毕业设计的项目,也可以作为大作业项目,不用担心代码重复,设计重复等,如果需要对项目进行修改,需要具备一定基础知识。 注意:如果装有360等杀毒软件,可能会出现误报的情况,源码本身并无病毒,使用源码时可以关闭360,或者添加信任。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值