菜鸟从零开始学习Deep learning
我是家家
这个作者很懒,什么都没留下…
展开
-
Attention is all your need
NIPS2017的paper,但是文中介绍比较简单这里有详细解释:http://jalammar.github.io/illustrated-transformer/转载 2020-07-09 10:29:04 · 365 阅读 · 0 评论 -
opencv 创建一个三通道灰度图。
cv::Mat gridimg(96,96,CV_8UC3,cv::Scalar(128,128,128));原创 2015-04-05 13:50:05 · 5034 阅读 · 0 评论 -
有公布code。Project-Out Cascaded Regression with an application to Face Alignment
Project-Out Cascaded Regression with an application to Face Alignment传统方法做的,效果还不错。翻译 2015-06-03 15:41:16 · 2203 阅读 · 2 评论 -
Classify Images with Conceptor Network CIFAR-10 CIFAR-100 MNIST...
瞧原创 2015-06-03 11:25:48 · 1316 阅读 · 0 评论 -
STRIVING FOR SIMPLICITY: THE ALL CONVOLUTIONAL NET _CIFAR10 CIFAR100
网络结构图:结果还不错。。。翻译 2015-06-03 14:27:33 · 2194 阅读 · 0 评论 -
Scene Labeling with LSTM Recurrent Neural Networks
结果图:翻译 2015-06-03 15:20:35 · 2251 阅读 · 1 评论 -
Some paper related to Image Deblurring
Generalized Video Deblurring for Dynamic ScenesKernel Fusion for Better Image DeblurringDeep Convolutional Neural Network for Image DeconvolutionLearning to Deblur (http://arxiv.翻译 2015-06-03 15:22:11 · 1453 阅读 · 0 评论 -
Zero-shot learning on the ImageNet of over 20000 classes
Devise: A deep visual-semantic embedding model (NIPS2013)Zero-Shot Learning by Convex Combination of Semantic Embeddings (http://arxiv.org/pdf/1312.5650.pdf)Mohammad Norouzi, Tomas Mikolov翻译 2015-06-05 10:44:05 · 1729 阅读 · 0 评论 -
Object detection + CNN 两篇paper
1、object detection networks on convolutional feature maps2、Object detection via a multi-region & semantic segmentation-aware CNN model原创 2015-05-24 15:54:38 · 3596 阅读 · 0 评论 -
CIFAR数据库预处理 (python)
code说明和下载地址:http://deeplearning.net/software/pylearn2/tutorial/index.html#tutorial转载 2015-07-13 17:02:54 · 1539 阅读 · 0 评论 -
Deep Learning Tutorials
Deep Learning Tutorials:http://deeplearning.net/tutorial/转载 2015-06-03 15:08:40 · 928 阅读 · 0 评论 -
Large-scale Scene Understanding (LSUN) 竞赛
http://lsun.cs.princeton.edu/#organizers原创 2015-06-02 18:33:53 · 1882 阅读 · 0 评论 -
Opencv 按像素拷贝图像图像
cv::Mat gridimg(96,96,CV_8UC3,cv::Scalar(128,128,128)); for (int c=0; c for (int h=0; h for (int w=0; w gridimg.at(h+hOffset, w+wOffset)[c] = m原创 2015-04-05 13:51:41 · 2180 阅读 · 0 评论 -
Bilinear CNN Models for Fine-grained Visual Recognition
下载地址:http://arxiv.org/pdf/1504.07889.pdf翻译 2015-05-03 11:00:47 · 6171 阅读 · 0 评论 -
VGG model 涉及到的paper
VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION转载 2015-05-04 20:13:29 · 4341 阅读 · 0 评论 -
C/C++ 定义向量、赋值和使用
好多年前学的东西,都忘记了,只能重新开始了。头文件: #include 定义vector变量: vector mean_cy;vector变量的赋值: mean_cy.push_back(104); mean_cy.push_back(117); mean_cy.push_back(123);vector变量的使用: mean_cy[0]原创 2015-05-04 21:32:32 · 13185 阅读 · 0 评论 -
Li feifei How we're teaching computers to understand pictures
视频地址:http://www.ted.com/talks/fei_fei_li_how_we_re_teaching_computers_to_understand_pictures?language=enWhen a very young child looks at a picture, she can identify simple elements: "cat," "bo转载 2015-05-05 09:29:50 · 1272 阅读 · 0 评论 -
SegNet: a deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling
框架:SegNet, a deep convolutional encoder-decoder architecture框架组成部分:A stack of encoders + a corresponding decoder stack + then feed into a softmax翻译 2015-05-29 11:08:40 · 3078 阅读 · 1 评论 -
CASIA WebFace Database 数据库
数据库地址:http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html原创 2015-05-29 11:10:14 · 13431 阅读 · 2 评论 -
Image Super-Resolution using CNN
paper: Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang. Learning a Deep Convolutional Network for Image Super-Resolution, in Proceedings of European Conference on Computer Vision (ECCV)翻译 2015-06-20 17:22:34 · 7931 阅读 · 0 评论 -
常用 blas 函数
转自:http://www.cnblogs.com/huashiyiqike/p/3886670.html转载 2015-06-02 18:42:57 · 957 阅读 · 0 评论 -
CUDA 打印输出 printf
示例: printf("%d\n",mask[ph * pooled_width + pw]);原创 2015-07-31 16:49:06 · 11734 阅读 · 0 评论 -
Image Super-Resolution Using Deep Convolutional Network (with demo)
Paper: Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang, "Image Super-Resolution Using Deep Convolutional Networks", http://arxiv.org/abs/1501.0009 "For Creators", http://piapro.net/en_for_cr翻译 2015-08-05 11:01:18 · 2240 阅读 · 0 评论 -
caffe blob 数据存储 blob.ccp
blob。h函数修改:void save_to_file(const std::string& file_name);blob。cpp 的修改:template void Blob::save_to_file( const std::string& file_name){ FILE* fp = fopen(file_name.c_str(), "w原创 2015-03-23 14:59:05 · 4035 阅读 · 0 评论 -
大脑视觉处理~~
1. 大脑对视觉信息的处理是分层级的,低级脑区可能处理对边度,边缘什么的,高级脑区处理更抽象的比如人脸啊,房子啊,物体的运动之类的。信息被一层一层抽提出来往上传递进行处理。2. 大脑对视觉信息的处理也是并行的,不同的脑区提取出不同的信息干不同的活,有的负责处理这个物体是什么,有的负责处理这个物体是怎么动的。3. 脑区之间存在着广泛的联系,同时高级皮层对低级皮层也有很多的反馈投射。转载 2015-12-27 16:44:49 · 6024 阅读 · 0 评论 -
caffe model for the face task
VGG: http://www.robots.ox.ac.uk/~vgg/software/vgg_face/CMU-OpenFace: http://cmusatyalab.github.io/openface/转载 2016-03-21 17:27:45 · 1764 阅读 · 0 评论 -
Basic build issue regarding libs, pkg-config and opencv
http://stackoverflow.com/questions/10526124/basic-build-issue-regarding-libs-pkg-config-and-opencv转载 2016-03-14 17:20:55 · 998 阅读 · 0 评论 -
How to set $LD_LIBRARY_PATH in Ubuntu?
http://serverfault.com/questions/201709/how-to-set-ld-library-path-in-ubuntu转载 2016-03-14 17:23:42 · 1144 阅读 · 0 评论 -
解读flow-guided feature aggregation for video object detection
文章主要贡献点:Flow-guided feature aggregation, an end-to-end framework for video object detection.Improve the per-frame features by aggregation of nearby features along the motion path, and thus impro原创 2017-11-30 20:03:49 · 1875 阅读 · 0 评论 -
解读: FlowNet learning optical flow with convolutional networks
贡献点: Construct CNNs which are capable of solving the optical flow estimation problem as a supervised learning task. Train CNN end-to-end to learn predicting the optical flow f原创 2017-11-30 22:10:02 · 1071 阅读 · 0 评论 -
解读:FlowNet 2.0 evolution of optical flow estimation with deep networks
贡献点:1. focus on the training data and show that the schedule of presenting data during training is very important. 2. develop a stacked architecture that includes warping of the second image with原创 2017-11-30 22:19:51 · 990 阅读 · 0 评论 -
Cycle GAN: Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
1. Adversarial loss: 2. Cycle consistency loss 3. Full objective function: Cycle GAN, 不仅让生成的图像和真实图像对抗学习,同时要求生成的图像能够decode出来原图像,这样不至于生成的图像太失真。文中有个例子,很好理解。就是不要要求中文翻译为英文,尽可能准确。还要求翻译...原创 2018-12-20 09:41:26 · 573 阅读 · 0 评论 -
Fast RCNN 训练自己的数据集(3训练和检测)
转载自 楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/https://github.com/YihangLou/fast-rcnn-train-another-dataset 这是我在github上修改的几个文件的链接,求星星啊,求星星啊(原谅我那么不要脸~~)在之前两篇文章中我介绍了怎么编译Fast RCNN,和转载 2016-01-08 15:24:09 · 14570 阅读 · 2 评论 -
Ubuntu14.04 安装Caffe(仅CPU)
转自:http://blog.csdn.net/u011762313/article/details/47262549#配置pycaffe前言GPU版本正文安装依赖库一安装BLAS安装python安装matlab安装opencv安装依赖库二下载Caffe如果安装的是opencv30编译Caffe配置pycaffe配置matcaffe前言:按照Ca转载 2016-01-08 14:40:26 · 7533 阅读 · 2 评论 -
Putty: _tkinter.TclError: no display name and no diplay environment variable
转载 2016-01-08 14:27:59 · 2576 阅读 · 0 评论 -
Recurrent network model for kinematic tracking
Model: Encoder-Recurrent-Decoder (ERD) model Task: for recognition and prediction of human body pose in videos and motion capture.... specially, motion capture generation, body pose labe翻译 2015-08-04 12:25:27 · 984 阅读 · 0 评论 -
Interaction between Visual cortex (biological) and computer vision
Deep hierarchies in the primate visual cortex: what can we learn for computer vision? TPAMI 2013 august.....翻译 2015-07-24 11:15:28 · 774 阅读 · 0 评论 -
RGB-D 图像 (Semantic Pose using Deep Networks Trained on Synthetic RGB-D)
RGB-D图像其实是两幅图像:一个是普通的RGB三通道彩色图像,另一个是Depth图像。Depth图像类似于灰度图像,只是它的每个像素值是传感器距离物体的实际距离。通常RGB图像和Depth图像是配准的,因而像素点之间具有一对一的对应关系。利用Kinect可以采集RGB-D 图像。。。可以参考:Lai, K.; Bo, L.; Ren, X. & Fox, D. A large-sca翻译 2015-08-05 10:56:43 · 2287 阅读 · 0 评论 -
Yann LeCun video: (What's Wrong with Deep Learning?)
video address: http://techtalks.tv/talks/whats-wrong-with-deep-learning/61639/翻译 2015-08-05 11:03:10 · 1109 阅读 · 0 评论 -
arxiv about computer vision and pattern recognition
Address: http://arxiv.org/list/cs.CV/recentBe updated everyday, check it everyday.翻译 2015-08-05 11:05:14 · 1582 阅读 · 0 评论