Paper reading 每日一记
文章平均质量分 58
我是家家
这个作者很懒,什么都没留下…
展开
-
Paper reading: CoDet co-occurrent guided region-word alignment for open-vocabulary object detection
通过把具有相同概念的图像聚集在一起,具有相同概念的目标具有非常高的共生能力。CoDet能够利用视觉相似性,来发现共生目标,并与相同的概念进行对齐。提出一个CoDet方法,通过把区域-文字对齐问题重新组织为一个共生的目标发现问题,以克服对已经对齐好的视觉-语言空间的依赖性。原创 2023-10-31 09:19:46 · 289 阅读 · 0 评论 -
Paper reading: Inject Semantic Concepts into Image Tagging for Open-Set Recognition
通过注入语义概念到图像标记(inject semantic concepts into image tagging),提出识别一切+的模型(Recognize anything plus model, RAM++), 一个具有强的开集识别能力的图像识别模型。RAM++模型能够利用图像-标签-文本三者之间的关系,整合image-text alignment 和 image-tagging 到一个统一的交互框架里。原创 2023-10-30 15:16:00 · 256 阅读 · 0 评论 -
Paper reading:Few-Shot Class Incremental Learning Leveraging Self-Supervised. CVPR2022workshop
本文研究利用自我监督学习的进步来纠正过度适应和灾难性遗忘,进而提高性能。首先探索在监督和自监督模型中学习到的特征串联基础上,训练轻量级特征融合+分类器。利用基类数据中的样本来学习监督模型,其中基类中大量的数据可以得到利用。利用大量未标注数据进行自监督模型的学习。利用融合后的特征来学习分类器,会取得比较好的性能。此外,文中还利用一个高斯生成器来减少小样本类增量学习过程中的灾难性遗忘问题...原创 2022-06-26 11:55:30 · 708 阅读 · 1 评论 -
Paper reading: ISDNet: Integrating Shallow and Deep Networks CVPR2022
本文提出一个高分辨率图像分割框架(Integrating Shallow and Deep Networks, ISDNet),他能很好地整合浅层和深层网络,并显著的提高推理速度并有一个精准的分割结果。为了更好地利用浅层特征和深层特征之间的关联性,提出一个关系感知特征融合模块(Relational-Aware feature Fusion module),以保证网络分割的性能和鲁棒性。...原创 2022-06-26 09:53:28 · 1354 阅读 · 0 评论 -
Paper reading:高分辨率图像分割:From Contexts to Locality: Ultra-high Resolution Image Segmentation ICCV2021
本文依然采用高分辨率图像分割的路线,其中高分辨率大尺度图像可以分割局部图像块,然后再对局部的图像块的分割结果进行融合。具体来说,本文提出一个位置感知上下文关联的分割模型来处理那些局部图像块,可以利用局部图像块之间的关联性及其上下文关系来处理那些变化大的语义区域。除此之外,我们提出一个上下文语义细化的网络,能够利用上下文语义信息来连接那些局部分割结果,以减少边界伪影和细化掩模轮廓。...原创 2022-06-24 16:42:22 · 961 阅读 · 1 评论 -
Paper reading:高分辨率图像分割 Collaborative Global-Local Networks for Memory-Efficient Segmentation CVPR19
协作式全局-局部网络(Collaborative global-local network),以一个高效的方式保留全局和局部信息。协作式全局-局部网络有两个分支:全局分支和局部分支,分别处理降采样后的全局图像和剪切后的局部图像块作为输入信息。为了完成分割任务,网络会融合两个分支的特征图,以更好地获取高分辨率的细节结构和上下文依赖关系。......原创 2022-06-24 10:51:34 · 502 阅读 · 0 评论