【线性代数】矩阵的特征分解、特征值和特征向量(eigen-decomposition, eigen-value & eigen-vector)

本文介绍了矩阵的特征分解,包括特征值、特征向量的概念及其几何意义。特征向量代表了矩阵作用下向量运动的方向,特征值则表示了运动的速度。特征分解在解决优化方程求解等问题中具有重要作用,特别是对于实对称矩阵,最大和最小特征值对应了函数的最大值和最小值。
摘要由CSDN通过智能技术生成

就像我们可以通过质因数分解来发现整数的一些内在性质一样(12 = 2 x 2 x 3),我们也可以通过分解矩阵来发现表示成数组元素时不明显的函数性质。

矩阵分解有种方式,常见的有

  • 特征分解
  • SVD 分解
  • 三角分解

特征分解

特征分解是使用最广泛的矩阵分解之一,即我们将矩阵分解成一组特征向量和特征值。方阵 A A 的特征向量(eigen vector)是指一个非零向量 v v ,这个向量与 A 相乘后相当于对该向量进行放缩变换– 方向不变,只是大小成倍数的缩放:

Av=λv A v = λ v
, 标量 λ λ 被称为这个特征向量对应的特征值。更准确的说,这里的 v v 是 右奇异向量 (right singular vector), 相应的我们也可以定义 左奇异向量(left singular vector) v T A = λ v T

如果 v v A 的特征向量,那么任何缩放后的 sv(sR,s0) s v ( s ∈ R , s ≠ 0 ) , 也是

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值