Paper reading: ISDNet: Integrating Shallow and Deep Networks CVPR2022

ISDNet: 提升高分辨率图像分割速度与精度的深度浅层融合框架
这篇论文介绍了一种名为ISDNet的高效高分辨率图像分割方法,它结合浅层和深层网络,旨在加快推理速度同时保持精确分割。通过关系感知特征融合模块,网络能够有效利用特征间的关联,适用于DeepGlobe、Inria Aerial和Cityscapes等数据集。实验表明,该框架在保持性能的同时显著提高了效率。

ISDNet: Integrating Shallow and Deep Networks for Efficient Ultra-high Resolution Segmentation CVPR2022

论文介绍:在高分辨率的图像分割中,计算和内存的需求都是非常大的。原有的方法主要是采用全局-局部细化的路线,虽然能够很好地考虑到内存的消耗,但是忽略了推断速度。本文主要关注于在整张图像上进行直接推理。本文提出一个高分辨率图像分割框架(Integrating Shallow and Deep Networks, ISDNet),他能很好地整合浅层和深层网络,并显著的提高推理速度并有一个精准的分割结果。为了更好地利用浅层特征和深层特征之间的关联性,提出一个关系感知特征融合模块(Relational-Aware feature Fusion module),以保证网络分割的性能和鲁棒性。

高分辨率图像分割框架对比图

本文的分割网络框架图

深层网络和浅层网络的输入和输出

High-frequency residuals的计算方式如下: 

High-frequency residuals处理之后的图像,作为浅层网络的输入,以学习那些互补的空间细节。对于深层网络,是把原始图像下采样为小尺度图像,作为输入。深层网络分支有三个损失,即:

辅助分割头(an auxiliary segmentation head) :标准的cross-entropy函数

超分辨率头

### 动态图表示中的对比学习用于金融市场预测 在金融市场的背景下,动态图表示通过捕捉随时间变化的关系来提供更丰富的数据结构。为了有效利用这些信息并进行市场预测,研究者提出了基于对比学习的方法[^1]。 #### 对比学习框架概述 对比学习是一种自监督的学习方法,在该领域内被广泛应用于图像识别等领域之外也取得了成功应用案例。对于动态网络而言,这种方法可以通过最大化同一节点不同时间戳下的相似度以及最小化不同时刻间其他节点之间的关联程度来进行训练模型参数调整优化过程[^2]。 ```python import torch from torch_geometric.nn import GCNConv, global_mean_pool as gap class ContrastiveLearningModel(torch.nn.Module): def __init__(self, input_dim, hidden_channels, out_channels): super(ContrastiveLearningModel, self).__init__() # 定义GCN层和其他必要的组件... def forward(self, x_t0, edge_index_t0, batch_t0, x_t1, edge_index_t1, batch_t1): z_t0 = ... # 计算t时刻特征向量z(t) z_t1 = ... # 同样计算下一个时间段内的特征 return z_t0, z_t1 def loss_function(z_i, z_j): temperature = 0.5 N = ... nominator = ... denominator = ... loss = -torch.log(nominator / denominator).mean() return loss ``` 此代码片段展示了如何构建一个简单的对比学习架构,并定义了一个损失函数用来衡量两个时间节点上相同实体之间表征的一致性和差异性[^3]。 #### 整合时间和静态关系 当涉及到具体实现时,除了考虑时间维度上的演化特性外,还需要关注那些相对稳定不变的因素——即所谓的“静态关系”。这可能包括但不限于公司间的长期合作关系、行业内部的竞争格局等。因此,在设计算法过程中应当充分考虑到这两方面因素的影响: - **时间序列建模**:采用循环神经网络(RNNs),长短记忆单元(LSTMs) 或者 Transformer 结构处理连续的时间步长输入; - **多尺度融合机制**:引入注意力机制或其他形式的信息聚合手段,使得模型能够更好地理解局部与全局模式之间的联系; 综上所述,通过对动态图表征学习的研究可以为金融市场分析提供更多可能性。然而值得注意的是实际操作中还需面对诸如噪声干扰等问题挑战[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值