ISDNet: Integrating Shallow and Deep Networks for Efficient Ultra-high Resolution Segmentation CVPR2022
论文介绍:在高分辨率的图像分割中,计算和内存的需求都是非常大的。原有的方法主要是采用全局-局部细化的路线,虽然能够很好地考虑到内存的消耗,但是忽略了推断速度。本文主要关注于在整张图像上进行直接推理。本文提出一个高分辨率图像分割框架(Integrating Shallow and Deep Networks, ISDNet),他能很好地整合浅层和深层网络,并显著的提高推理速度并有一个精准的分割结果。为了更好地利用浅层特征和深层特征之间的关联性,提出一个关系感知特征融合模块(Relational-Aware feature Fusion module),以保证网络分割的性能和鲁棒性。
高分辨率图像分割框架对比图

本文的分割网络框架图
深层网络和浅层网络的输入和输出:
High-frequency residuals的计算方式如下:

High-frequency residuals处理之后的图像,作为浅层网络的输入,以学习那些互补的空间细节。对于深层网络,是把原始图像下采样为小尺度图像,作为输入。深层网络分支有三个损失,即:
辅助分割头(an auxiliary segmentation head) :标准的cross-entropy函数
超分辨率头
ISDNet: 提升高分辨率图像分割速度与精度的深度浅层融合框架

这篇论文介绍了一种名为ISDNet的高效高分辨率图像分割方法,它结合浅层和深层网络,旨在加快推理速度同时保持精确分割。通过关系感知特征融合模块,网络能够有效利用特征间的关联,适用于DeepGlobe、Inria Aerial和Cityscapes等数据集。实验表明,该框架在保持性能的同时显著提高了效率。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



