Stable Diffusion 图像4K高清放大方法汇总 局部放大,全局放大,最强放大ControlNet Tile模型介绍

综述

想高清增加细节:当前最推荐 ControlNet Tile 模型进行放大。

只想简单傻瓜高清和,使用 Stable Diffusion 内置附加功能放大,选择对应算法即可。

目前得到 4K 高清图片最快速方案

步骤一:使用图生图工具,将图片放大 2 倍。

步骤二:使用图生图里的 4x-UltraSharp 算法,再将图片放大 2 倍。

步骤三:保存图片。

简而言之:

图生图工具 → 2 倍放大

4x-UltraSharp 算法 → 再 2 倍放大→ 得到 4K 高清图片 → 保存图片

这是目前得到 4K 高清图片最快速和效果最佳的方案

分两步骤进行放大,既快又好,图片质量高而且处理速度快,是图片处理的最优解。

目前得到 4K 高清图片且增加画面细节的最佳方案

图生图+ControlNet Tile+Ultimate SD

比如768*768尺寸原图不需要高清修复直接就可以放到至4K清晰度。

放大操作步骤

**
**

Stable Diffusion 自带附加功能放大 ⭐️⭐️⭐️⭐️⭐️

点评:使用简单方便,非常适合新手入门。便捷度 5 星,放大效果 4 星。

可以使用 stable-diffusion-webui 自带的放大功能,对图片进行放大。

①打开 stable-diffusion-webui;

②点击 Extras(更多);

③点击 source(来源)选择你要放大的图片,或者直接拖入图片;

④选择放大的倍数,一般 4 倍就足够了;

⑤选择放大算法:真人一般使用 ESRGAN_4x 来放大,二次元人物一般使用 R- ESR GAN 4x 来放大。

⑥点击生成(generate)按钮,等待几秒就能完成图片的放大了。

img

Ultimate-Upscale 脚本终极放大 ⭐️⭐️⭐️⭐️

**
**

点评:使用简单方便,放大效果好,放大效果 4 星。

重绘幅度设置到 0.2 到 0.3 之间。

img

文生图高清重绘必须开 0.4 以上不然会模糊,就算开 0.2 重绘同时减高清修复采样次数都会模糊,重绘 0.2 采样次数 1 都会图片模糊。

终极放大功能和附加功能放大效果基本一致,

文生图放大才能增加画面细节!

测试 MD 放大效果和附加、终极效果基本一致,而且耗时特别长,一般不建议使用。

最推荐 tile 放大!

Multidiffusion 插件放大 ⭐️⭐️⭐️⭐️

点评:使用复杂,放大时间长,放大效果 4 星,有 Tile 模型以后不建议使用。

注意:容易爆显存,小显存的电脑不建议使用。

ControlNet Tile 增加细节高清放大:⭐️⭐️⭐️⭐️⭐️

点评:操作复杂,放大效果最佳,所有配置电脑都可以使用的最强放大方法,五星推荐。

需要用到工具,图生图+ControlNet Tile+Ultimate SD

最近尝试了新风格出图,建筑和场景比卡通和人物需要更多细节才能展现,

简而言之迭代步数设置:场景>人物>卡通,如果觉得细节不够就要增加迭代步数,还需搭配高清修复。

因为图片细节不足,就研究了对比了当前 Stable Diffusion 各种放大方法,目前来说有以下几种放大方法:

1.SD 自带附加功能放大

2.Ultimate-Upscale 放大

3.Multidiffusion+tile 放大

4.ControlNet+Tile 放大

其他几种放大出来很久,就不介绍了,只介绍最强放大模型 Tile 的组合用法,让你模糊图片一键就搞定。

使用功能:图生图+ControlNet Tile+Ultimate SD

使用 Tile 模型必须先更新 ControlNet 到 1.1 版本,新版本选择 tile 分类以后,预处理器和模型会自动选择,一个月之前全部需要手动选择,选错就会失败报错!

全部图生图放大文字步骤如下,可以对照图片进行学习。

1.拖入图片填写提示词,发送到图生图,如果有描述则直接放大,无描述需要手动写提示词,或者用反推器反推提示词,不需要完美,能描述画面场景即可。

2.配置图生图迭代步数,卡通 20+,人物 30+,场景 40+以上步数,然后设置尺寸,这里的尺寸会和 Ultimate 中设置的倍数相乘得到最终倍数,一般默认不改动即可。Tile 模式重绘幅度可以最高设置到 1,可以增加非常多细节!注意普通模式最高 0.5 重绘,否则放大后画面会与原图完全不一样!其他设置可以不动。

3.配置 ControlNet,启用,勾选完美像素,选择 Tile 分类,预处理器选择 tile_resample,模型是 Tile 即可。控制模式根据情况,分别是平衡、提示词更重要、CN 更重要,不懂的可以选择平衡,其他设置可以不动。

4.脚本下拉选择 Ultimate SD upscale,放大类型选择从原图,Scale 放大倍数根据图片原始尺寸和目标放大尺寸计算,一般建议放大到 2K 或者 4K 即可,再高处理时间过长。其他设置可以不动。

5.点击生成,耐心等待即可,Tile 模型会对图像切割分块进行高清重绘,最后拼接成大图,就可以得到高清放大且增加超多细节的美图啦。

原图 768*768

img

操作步骤文字版

img

img

img

img

img

Tile 进行分块重绘最终拼接成大图

img

img

img

img

Tile 放大 重绘幅度 1 Ultimate 放大 3 倍

Time taken: 10m 17.29s, Torch active/reserved: 3551/4508 MiB, Sys VRAM: 6595/12288 MiB (53.67%)

Tile 放大 重绘幅度 0.5 Ultimate 放大 3 倍

Time taken: 7m 0.51s, Torch active/reserved: 3539/4494 MiB, Sys VRAM: 6581/12288 MiB (53.56%)

img

img

img

放大插件

终极放大:ultimate-upscale

Coyote-A/ultimate-upscale-for-automatic1111

https://github.com/Coyote-A/ultimate-upscale-for-automatic1111

使用以图生图的方式,安装一个开源插件 Ultimate SD Upscale extension,来进行图片的放大。

①在“扩展”入口,选择“从网址安装”,输入以下链接:https://github.com/Coyote-A/ultimate-upscale-for-automatic1111,安装完成后,重启一下 stable-diffusion-webui。

②输入提示词:将之前生成图片时的提示词和反向提示词都需要输入在图生图的相应模块中。

③设置参数:

  • 缩放模式选择“拉伸”
  • 采样步数选择 40 或更高
  • 采样方法选择“DPM++ SDE Karras”
  • 重绘幅度选择 0.2 或更小

④设置插件参数:

  • 在脚本处选择“Ultimate SD Upscale”
  • Target size type 选择“scale from image size”,代表读取要放大图片的尺寸
  • scale 选择“4”,代表放大 4 倍
  • 放大算法选择 Esrgan_4x(真人实景类效果较好)
  • 放大方式选 chess,代表棋盘式放大(把要放大的图切成多个格子分别重绘放大,提升精细度)

⑤点击生成,等待十几秒,成功出图。

高清放大神器:Multidiffusion 和 Tiled VAE

由于绘制高清图片对显卡显存很高,很多朋友因为显存限制不能绘制超过 1000 分辨率的大图,都是小图后缩放,但是不会增加细节。

下面这个工具可以有效的减少显存的占用,在放大同时增加细节,甚至直接绘制 2K 原图放大到 4K。

开启 Multidiffusion 的同时不建议搭配 Lora 等模型,不需要指定关键词,放大的原图已经是挑选过的,

为了尽量保持原图细节,所以 Denoising strength 尽量往小了开,建议 0.2~0.3,再高就容易出问题,而且 Denoising strength 值越小放大速度越快**。**

Tiled VAE 不是必须的,它只是在你想获得更大的图像时节省你的 VRAM。它不会影响您的结果,并且与几乎所有内容(如 Highres)兼容。

局部放大神器:Local Latent upscaLer

**
**

hnmr293/sd-webui-llul: LLuL - Local Latent upscaLer

https://github.com/hnmr293/sd-webui-llul

这是一款可以局部高清放大,增加细节的插件,

使用步骤:

  1. 从 GitHub 安装
  2. WebUI 中 选择框 Enabled 启用功能。
  3. 将灰色框移动到要应用放大的位置。
  4. 点击生成图片

img

img

img

img

放大软件&网站

上述通过 stable-diffusion-webui 放大图片,虽然可以高清放大,但是需要开启 Stable Diffusion,这里介绍一些更简单的方法对图片进行放大。

bigjpg

一个网站,使用最新人工智能深度学习技术——深度卷积神经网络,将噪点和锯齿的部分进行补充,实现图片的无损放大。

Bigjpg - AI 人工智能图片无损放大 - 使用人工智能深度卷积神经网络(CNN)无损放大图片

https://bigjpg.com/

使用方法非常简单,直接把图片拖入,然后选择放大的倍数即可,免费模式可以最大放大 8 倍。

注意:目前免费版最高支持放大至 3000x3000px 像素 5M 的图片

imgimg

最大可以上传多大图片?

目前免费版 3000x3000px, 5M; 付费版 50M。

TopazGigapixelAI

Topaz Gigapixel AI 是一款图像无损放大软件,使用人工智能技术生成高质量的放大图片。它采用深度学习算法,可以最大限度地保留图像细节,使放大图片清晰自然,避免模糊。

该软件具有以下主要功能:

  1. 采用人工智能技术生成高质量的放大图片。它可以分析数百万张图片,理解不同图片在放大过程中细节的损失,并能补充自然细节。这意味着可以获得清晰的放大图片,同时最大限度保留原图像质量。
  2. 放大速度快。GPU 加速可以使处理速度提高 5 倍,快速生成你需要的尺寸。
  3. 放大率高。可以将图片放大 600%而仍保持高质量,生成清晰细致的图片。
  4. 适用于后期制作。可以方便进行高分辨率的图片裁剪等操作。
  5. 不同于常见的插值算法。该软件使用深度学习算法,可以更好地保留细节,生成高质量放大图片。
  6. 图片质量高。可以补充自然细节,生成清晰逼真的放大图片,避免模糊。

总之,Topaz Gigapixel AI 是一款功能强大的 AI 图像无损放大软件。它可以快速高质量地放大图片,最大限度地保留原图片质量和细节,生成清晰自然的结果,满足用户对高分辨率图片的需求。

这份完整版的AIGC全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 使用 Stable Diffusion 实现高清图片放大方法 为了实现高质量图像的生成,Stable Diffusion 提供了 hires.fix 功能来专门应对这一需求。此功能分为两个主要阶段:初步生成和放大修复。 #### 初步生成低分辨率图像 在第一步中,hires.fix 会以较低的分辨率为起点,通常设定为 512×512 像素大小。这个过程能够迅速捕捉并呈现出图像的主要轮廓以及整体布局[^1]。 ```python from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler model_id = "stabilityai/stable-diffusion-2" scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler) prompt = "A detailed landscape painting with mountains and rivers." low_res_image = pipe(prompt=prompt, height=512, width=512).images[0] ``` #### 放大与细节增强 接着进入第二阶段——放大处理。此时算法会把之前得到的小图扩大到更高的尺寸(例如 1024×1024),同时对新增加的空间填充合理的细节点缀,从而让最终产物具备更好的视觉表现力。 ```python high_res_image = pipe(prompt=prompt, image=low_res_image, num_inference_steps=70, eta=0.0, guidance_scale=7.5, strength=0.8, generator=None, output_type='pil').images[0] high_res_image.save("output_highres.png") ``` 这种方法既提高了工作效率又保证了成品的质量,非常适合追求高效能的同时不牺牲画质的应用场景。通过上述两步走策略,可以有效解决直接设置过高分辨率可能带来的计算资源浪费问题,并且避免因一次性渲染过大区域而导致的效果不佳情况发生[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值