Stable Diffusion 常用放大算法详解

本文详细介绍了稳定扩散(Stable Diffusion)中的常用图像放大算法,包括传统插值算法如Lanczos、Nearest,以及AI图像放大算法如4x-UltraSharp和ESRGAN系列。推荐使用ESRGAN系列中的R-ESRGAN 4x+,针对写实图片和二次元图像分别推荐R-ESRGAN 4x+ Anime6B,以实现高质量的图像放大效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

常用放大算法

图像放大算法大致有两种:

  • 传统图像放大算法(Lantent、Lanczos、Nearest)
  • AI图像放大算法(4x-UltraSharp、BSRGAN、ESRGAN等)

传统图像放大算法是基于插值算法,计算出图像放大后新位置的像素值。AI图像放大算法,比一般的传统图像放大算法效果更好。

  • 推荐放大算法 ESRGAN系列 和 4X-UltraSharp
  • R-ESRGAN 4x+ 适用于写实图片
  • R-ESRGAN 4x+ Anime6B 适用于二次元类图片或二三次元混合图片

Latent 系列(不常用)

Latent 系列放大算法是在潜空间对图像进行放大,然后重新采样来增加图像的细节。

此外由于不是对图像像素级别的直接放大操作,当高分迭代步数不够或者重绘幅度过低时,生成的图像会模糊或失真。

重绘幅度在0~0.5的时候放大生成的图像是模糊的,因此在使用 Latent 系列算法时,需要一定的重绘幅度,并且随着放大倍数的提高,放大的图像会变得扭曲。

不同 Latent 算法之间的区别。

  • Latent (antialiased):结合抗锯齿 (antialiased) 技术来消除图像中的锯齿状边缘。
  • Latent (bicubic):使用双立法插值 (bicubic) 算法来放大图像,其在每个像素的位置使用一个三次多项式来拟合周围16个邻近像素(4x4的像素网格)的值。该算法考虑了每个像素点与其周围像素点之间的非线性关系,从而能够更准确地模拟图像中复杂的灰度变化,使得图像更加细致。
  • Latent (bicubic antialiased):结合双立法插值 (bicubic) 算法和抗锯齿 (antialiased) 技术,放大图像的同时消除锯齿状边缘,提高图像的分辨率和质量。
  • Latent (nearest):使用最近邻插值 (Nearest Neighbor Interpolation) 算法来放大图像,其在放大图像后,对于新位置的像素直接采用最近的原图像像素作为其值。这导致新像素之间缺乏过渡,容易导致图像边缘出现明显的锯齿状或阶梯状效果,放
### 关于Cursor机器码的限制 在编程环境中,“cursor”通常指的是光标的定位和操作,而并非直接关联到低级的机器码层面。然而,在某些特定场景下,比如嵌入式开发或是操作系统内核编写时,确实会涉及到通过机器指令来控制硬件级别的光标。 对于机器码中的光标处理主要存在以下几个方面的局限: - **地址空间有限**:由于早期计算机体系结构的设计原因,用于表示屏幕坐标的寄存器位数较少,这使得能够表达的最大坐标范围受到严格限制[^1]。 - **效率问题**:频繁更新光标位置可能会导致性能下降,尤其是在资源受限设备上。每次移动都需要重新计算并刷新显示缓冲区的内容,增加了CPU负担[^2]。 - **兼容性挑战**:不同类型的终端或显示器可能采用不同的协议去解释相同的机器命令序列,这就造成了跨平台移植上的困难。 ```assembly ; 假设这是一个简单的汇编程序片段用来设置文本模式下的光标位置 mov ah, 02h ; 设置功能号为AH=02H (BIOS中断调用) mov bh, 00h ; 页面编号BH=0(默认页面) mov dh, row ; DH=row 行号 mov dl, col ; DL=col 列号 int 10h ; 执行视频服务INT 10H ``` 上述代码展示了如何利用BIOS中断服务来改变DOS环境下文本模式下的光标位置。需要注意的是这种做法依赖具体的硬件环境和支持情况,并不具备良好的通用性和可移植性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值