Stable Diffusion 常用放大算法详解

本文详细介绍了稳定扩散(Stable Diffusion)中的常用图像放大算法,包括传统插值算法如Lanczos、Nearest,以及AI图像放大算法如4x-UltraSharp和ESRGAN系列。推荐使用ESRGAN系列中的R-ESRGAN 4x+,针对写实图片和二次元图像分别推荐R-ESRGAN 4x+ Anime6B,以实现高质量的图像放大效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

常用放大算法

图像放大算法大致有两种:

  • 传统图像放大算法(Lantent、Lanczos、Nearest)
  • AI图像放大算法(4x-UltraSharp、BSRGAN、ESRGAN等)

传统图像放大算法是基于插值算法,计算出图像放大后新位置的像素值。AI图像放大算法,比一般的传统图像放大算法效果更好。

  • 推荐放大算法 ESRGAN系列 和 4X-UltraSharp
  • R-ESRGAN 4x+ 适用于写实图片
  • R-ESRGAN 4x+ Anime6B 适用于二次元类图片或二三次元混合图片

Latent 系列(不常用)

Latent 系列放大算法是在潜空间对图像进行放大,然后重新采样来增加图像的细节。

此外由于不是对图像像素级别的直接放大操作,当高分迭代步数不够或者重绘幅度过低时,生成的图像会模糊或失真。

重绘幅度在0~0.5的时候放大生成的图像是模糊的,因此在使用 Latent 系列算法时,需要一定的重绘幅度,并且随着放大倍数的提高,放大的图像会变得扭曲。

不同 Latent 算法之间的区别。

  • Latent (antialiased):结合抗锯齿 (antialiased) 技术来消除图像中的锯齿状边缘。
  • Latent (bicubic):使用双立法插值 (bicubic) 算法来放大图像,其在每个像素的位置使用一个三次多项式来拟合周围16个邻近像素(4x4的像素网格)的值。该算法考虑了每个像素点与其周围像素点之间的非线性关系,从而能够更准确地模拟图像中复杂的灰度变化,使得图像更加细致。
  • Latent (bicubic antialiased):结合双立法插值 (bicubic) 算法和抗锯齿 (antialiased) 技术,放大图像的同时消除锯齿状边缘,提高图像的分辨率和质量。
  • Latent (nearest):使用最近邻插值 (Nearest Neighbor Interpolation) 算法来放大图像,其在放大图像后,对于新位置的像素直接采用最近的原图像像素作为其值。这导致新像素之间缺乏过渡,容易导致图像边缘出现明显的锯齿状或阶梯状效果,放
### Stable Diffusion 放大算法实现与技术 #### 采样过程中的扩散模型结构 在扩散模型中,每一个采样步骤都由特定的操作组成[^1]。这些操作通常涉及噪声预测以及如何基于当前状态更新图像表示。 对于Stable Diffusion而言,在放大过程中应用的技术可以分为几个方面: - **架构设计**:从简单的线性投影器和多层感知机(MLP),逐渐演变为更复杂的机制如交叉注意力模块、Q-Former 和 P-Former 等高级组件来增强特征提取能力[^2]。 - **训练方法优化**:采用知识蒸馏的方法减少推理所需的迭代次数而不损失质量。具体来说,通过分阶段的方式逐步降低所需步数——先是将标准50步版本压缩至16步,再进一步精炼成仅需8步即可完成高质量生成的高效UNet网络[^3]。 为了更好地理解这一流程,下面给出一段简化版的知识蒸馏伪代码用于说明如何构建一个低步数的有效模型: ```python def distill_model(teacher, student_steps=8): teacher.eval() # 设置教师模型为评估模式 distilled_unet = UNet(student_steps).train() optimizer = torch.optim.Adam(distilled_unet.parameters()) for epoch in range(num_epochs): for batch_data in dataloader: with torch.no_grad(): target_output = teacher(batch_data) output = distilled_unet(batch_data) loss = criterion(output, target_output) optimizer.zero_grad() loss.backward() optimizer.step() return distilled_unet ``` 此段代码展示了如何利用预训练好的高精度模型指导新模型的学习过程,从而使得后者能够在较少的时间内达到相近的效果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值