想要掌握ComfyUI工作流?这份全网最全AI绘画教程助你轻松搞定!从基础安装到进阶技巧,详细讲解节点连接、参数调整。通过丰富案例,让你从新手成长为高手,开启AI绘画新阶段。
一、ComfyUI简介
ComfyUI是一款基于节点工作流的图形界面工具,专为稳定扩散算法(Stable Diffusion)设计。它通过将复杂的稳定扩散流程分解为多个可编辑的节点,使用户能够直观地定制和复现工作流程,无需编写代码。在图像生成领域,ComfyUI凭借其出色的性能和高效的显存利用,特别是其切块运算功能,有效避免了生成大图片时显存爆满和图片碎裂的问题。
稳定扩散(Stable Diffusion)概述
Stable Diffusion是一种文本到图像的人工智能模型,它通过深度学习技术将输入的文本描述转化为对应的图像内容。这种模型基于大量的数据进行训练,能够理解和生成各种风格的图像。
ComfyUI特点
- 自由度高:用户可以根据需求自由定制工作流程。
- 界面直观:通过节点式界面,用户可以直观地设计和执行复杂的工作流程。
- 流程定制性高:每个节点都可以进行详细的参数设置,以满足不同的生成需求。
- 结果可重用性:通过工作流的导入导出功能,用户可以轻松分享和复用他人的工作流程。
- 经济的显存占用:通过切块运算等优化手段,有效节省显存,避免在生成大图片时出现资源瓶颈。
二、ComfyUI使用的Stable Diffusion模型
Stable Diffusion模型或checkpoint模型是预先训练好的权重文件,用于生成具有特定风格的图像。在ComfyUI中,用户可以选择不同的模型来生成不同风格的图像。以下是一些推荐的Stable Diffusion模型及其特点:
- Realistic Vision:逼真的照片风格,适合生成高度真实的图像。
- Anything v3:动漫风格,能够生成具有动漫特色的图像。
- Dreamshaper:写实绘画风格,结合了照片和绘画的特点。
模型结果对比与下载
不同的Stable Diffusion模型会对生成的图像产生显著影响。以下是一些推荐的模型及其下载链接:
- Deliberate v2:擅长渲染逼真的插图,结果可能非常出色。下载链接:[链接地址]
- F222:专注于生成具有正确身体部位关系的女性肖像,同时也适合生成美观的服装。下载链接:[链接地址]
- ChilloutMix:特别针对生成照片质量的亚洲女性进行优化,包含多种衣柜术语的提示词。下载链接:[链接地址]
- Protogen v2.2:生成具有良好品味的插图和动漫风格图像。下载链接:[链接地址]
- GhostMix:采用90年代经典动漫《攻壳机动队》风格进行训练,擅长生成机器人和机器人相关图像。下载链接:[链接地址]
- Inkpunk Diffusion:经过Dreambooth训练的模型,具有独特的插画风格。下载链接:[链接地址]
请注意,上述模型通常可以从Civitai和Huggingface等平台上下载。在下载和使用这些模型时,请确保遵守相关的版权和使用协议。
这里为了帮助大家更好地掌握 ComfyUI,分享一套字节大佬整理的ComfyUI工作流集合,其包含了很多好玩有趣,但又有点复杂的工作流节点和json配置。
涵盖了 Stable Scascade、3D、LLM+SD、Portrait Master、SVD 等相关类别的工作流,共计15个类目38项工作流。这些都放在了下方卡片,需要的点击免费获取:
对于初学者来说,最佳的学习方法是以这些现成的工作流为模板,一步步地复刻并理解它们。
通过观察和分析别人的工作流,你可以学习到各种节点搭建的技巧和方法。随着理解的深入,你将能够根据自己的需求创新和搭建属于自己的工作流。
希望本文能帮助你有效地提升你的设计效率和创造力。
对于从来没有接触过AI绘画的同学,我已经帮你们准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。
这份完整版的AI绘画资料和SD整合包已经打包好了,需要的点击下方插件,即可前往免费领取!
三、ComfyUI应用
ComfyUI凭借其模块化的设计,将图像处理功能拆分成独立的节点,并通过工作流的形式将这些节点串联起来,实现了高度的灵活性和可扩展性。因此,ComfyUI在多个领域都有广泛的应用,包括但不限于:
-
AI绘画:用户可以通过自定义工作流,结合不同的模型和参数,快速生成符合要求的艺术作品。
-
图像处理:通过加载特定的模型和处理流程,ComfyUI可以用于图像修复、风格迁移、超分辨率等任务。
-
动画与影视:在动画和影视制作中,ComfyUI可以用于生成背景、角色设计、特效等,提高制作效率和质量。
-
AI视频:结合视频处理技术和Stable Diffusion模型,ComfyUI可以生成具有特定风格的视频内容,为视频创作提供更多可能性。
四、ComfyUI节点介绍
ComfyUI作为一款开源工具,提供了丰富的节点类型,用户可以根据自己的需求灵活搭建工作流。以下是ComfyUI默认工作流中主要节点的介绍:
-
Load Checkpoint 节点
-
- Model:负责图像生成的模型部分。
- CLIP:将文本转换为模型可以理解的格式。
- VAE:用于将图像在潜在空间和像素空间之间进行编码和解码。
- 功能:加载预训练的Stable Diffusion模型。
- 主要组件:
-
CLIP Text Encode 文本提示词节点
-
- 功能:将用户输入的文本提示词转换为模型可以理解的数字表示(嵌入)。
- 输入:正向和负向的文本提示词。
- 输出:编码后的嵌入,传递给KSampler节点。
-
KSampler节点(采样器)
-
- Model:来自Load Checkpoint节点的模型输出。
- positive:来自CLIP Text Encode节点的正向提示词嵌入。
- negative:来自其他CLIP Text Encode节点的否定提示词嵌入(如果有)。
- latent_image:在潜在空间中的图像(如果进行img2img任务)。
- 功能:执行图像生成的采样过程。
- 输入:
- 输出:采样后的潜在空间图像,传递给VAE Decode节点。
-
VAE Decode 节点
-
- 功能:将潜在空间中的图像解码为像素空间中的实际图像。
- 输入:来自KSampler节点的潜在空间图像。
- 输出:解码后的像素图像,传递给Save Image节点进行保存和显示。
ComfyUI对电脑配置有一定要求,特别是显卡和内存方面。为了获得更好的性能和体验,建议使用N卡且显存在8GB以上,内存在16GB以上。同时,由于ComfyUI是完全开源的,用户可以根据自己的需求和兴趣,对节点进行扩展和定制,实现更多高级功能。
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。