YOLOv3 SPP理论

L~2~三个trick

1. Mosaic图像增强

方法:多张图像拼接

优:增加数据的多样性,增加目标个数,变相的增加了BatchSize,使BN能一次性统计更多的图片参数

2. SPP(Spatial Pyramid Pooling)模块

步距为1,池化之前会进行填充,池化后特征的大小和深度完全一致

3. IoU Loss

3.1 L2损失和IoU损失 

 在此种情况下L2损失不能够很好的反应候选框的好坏

还有一种常见的IoU损失计算:IoU Loss = 1 - IoU

3.2 IoU Loss的优点:能够很好反应重合程度,具有尺度不变性

缺点:不相交时loss为0

4. GIoU Loss

绿色框为GT,红色为预测框,蓝色框为红绿框的最小外边界框(Ac),

-1 <= GIoU <= 1,等于1时两框完全重合,等于-1时两框没有任何重叠 

 

 特殊情况:

 

5. DIoU Loss(Distance-IoU)和CLoU Loss(Complete-IoU)

5.1 DIoU Loss

解决IoU Loss和GIoU Loss收敛慢,回归不准确的问题 

c代表覆盖GT框和预测框的最小框的对角线距离,d表示两个框中心点间的距离

-1 <= DIoU <= 1

当GT框和预测框完全重叠时DIoU为1,当两框距离无穷远时DIoU为-1

 

5.2 CIoU Loss

引入了长宽比

 6. Focal Loss

Focal Loss主要用于单阶段的目标检测模型

 解决问题:正负样本不平衡

对于易分的样本,我们减少它的学习权重(通过减少其损失值),而把学习的注意放在难学习的样本上,即那些预测概率与真实标签相差很远的样本。

一张图片中的正样本大概只有十几个或几十个,而负样本有10^4-10^5个,大量的负样本会淹没少量但有助于训练的样本。

但是易受噪音干扰,一旦数据标注出错,Focal Loss会对这些错误标注疯狂学习。

在双阶段目标检测中,比如Fast-RCNN,最终生成的候选框只有2k个,情况相对好很多。

6.1 引入αt平衡正负样本的数量

当为正样本时,乘αt,当为负样本时,乘(1-αt),实验证明,α取0.75时,AP,AP75是最高的,α取50时AP50是最高的

虽然引入α可以平衡正负样本,但不能区分哪些样本是容易的,那些样本是困难的。

6.2 引入 来降低易分样本的损失贡献

 

 6.3 最终Focal Loss的表达式

根据实验得出γ=2.0,α=0.25时AP最高

 

 

 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值