一键换装IDM-VTON本地一键包,超真实的虚拟试衣项目,连衣服的褶子都那么真实

近日,一项名为IDM-VTON的虚拟试衣技术引起了广泛关注。这项技术能够生成高度真实的虚拟试衣图像,其细节处理之精细,令人赞叹不已。

IDM-VTON技术的核心在于其对服装细节的精准捕捉。无论是纹理、图案还是缝线,这些细微之处都能在试衣图像中得到准确的再现。这种对细节的高度还原,使得用户在试衣时能够更加真实地感受到衣物的质感和设计。

read-normal-img

注:一键包较大,安装包20G左右,解压出来30G左右,请确保有足够的磁盘空间。

显卡要求也较高,建议N卡12G显存起使用。如没有硬件,可以使用在线体验,在帖子下方有地址。

一键包下载地址:https://deepface.cc/thread-175-1-1.html

先看两张官方的演示动图

测试了几天,效果是真的好,比之前的 Anydoor 无论效果还是操作要好很多,而且不用像之前的项目,手动画衣服遮罩范围。这个大部分直接自动识别。

我用RTX3060 12G显存实测下来,出一张图要12分钟。实在太吃显卡了,看了网上的评测,这项目在3090和4090等高端卡出图很快,几十秒就能出来。

光说不练不行啊

下面简单说下使用方法:

操作很简单,首先上传一张图片,就是模特图片

然后上传一张需要换的衣服的图,建议图片尺寸768*1024,最好是3:4的比例,如果尺寸是正方形的,就要勾选下方的“自动裁切”

read-normal-img

模特图下方有几个工具按钮,主要是手动画遮罩的笔刷和橡皮工具,如下图,分别是返回照片场景、裁切、笔刷、橡皮

read-normal-img

如果是简单的衣服场景,可以先用“自动遮罩”功能,默认是勾选的,能自动识别大部分常见的衣服,无需手动画,如下图

read-normal-img

服装图下方,有个温馨的功能提示词区域,可以手动输入提示词,帮助程序更精准的识别衣服,比如输入 Dress,就是告诉AI,这是连衣裙,如下图

read-normal-img

所有参数设置完成后,就可以直接点下方的“试穿”按钮,接下来就是漫长的等待了,根据自己的显卡,时间从几十秒到十几分钟不等。

最终出来的效果还是很赞的,如下图

read-normal-img

注:上图换的是白色T恤,因为中途我为了演示,所以服装换了红色连衣裙。

目前项目加载的模型太多,加载速度和生成速度都略慢,看来还需要很多优化,期待作者早日解决这些问题。

如果你没有硬件条件使用,可以访问下方网址在线体验,需要魔法上网。

试用地址:https://huggingface.co/spaces/yisol/IDM-VTON

试用了几轮下来,换装效果的确不错,但也有一些瑕疵,比如换装后有时会出现大花臂、衣服上的字体没有很好地还原、手部变形。

上面展示的虚拟试衣技术由韩国科学技术院 (KAIST) 、 OMNIOUS.AI 共同打造,他们提出了一种新型扩散模型,该技术在提高服装保真度的同时,还能生成真实的视觉效果。

技术特点:

  • 高度真实感: IDM-VTON生成的试衣图像细节精细,为用户带来接近现实的试衣体验。
  • 复杂背景处理: 即便在户外或背景复杂的场景中,该技术也能准确展示衣物的试穿效果,保持图像的高质量。
  • 一致性保持: 在不同人物模型上展示同一件服装时,IDM-VTON能够保持服装细节的一致性,确保无论在何种体型或姿态下,服装的呈现效果都保持高度一致。
  • 纹理与图案精确再现: 该技术特别擅长捕捉服装的纹理和图案,即使是最微小的装饰也能在试衣图像中得到准确反映。

应用场景:

IDM-VTON的虚拟试衣技术可以广泛应用于时尚零售、个性化服装设计、在线试衣间以及增强现实(AR)试衣体验等多个领域。它不仅为消费者提供了便捷的试衣方式,也为服装设计师和零售商提供了一种全新的展示和销售手段。

技术优势:

用户无需亲自试穿,即可预览服装在不同场景和不同体型上的效果。

零售商可以节省实体试衣间的成本,同时提供更多样化的试衣体验。

设计师可以通过虚拟试衣快速获取反馈,优化服装设计。

项目地址:https://github.com/yisol/IDM-VTON

### ComfyUI 中结合 IDMVTON虚拟试衣实现 #### 背景介绍 ComfyUI 是一种灵活的图形化界面工具,支持多种机器学习模型的集成与操作。IDM (Image-based Dense Pose Model) 提供了人体姿态估计和密集对应的能力,而 VTON (Virtual Try-On Network) 则专注于通过图像处理技术实现实时虚拟试衣的效果[^1]。 #### 技术架构概述 为了在 ComfyUI 中实现虚拟试衣功能,可以采用以下的技术栈组合: - **DensePose 模型**:用于提取人体的姿态信息以及像素级的人体部位分割。 - **VTON 网络**:负责将目标服装渲染到人体上,生成逼真的试衣效果图。 - **ComfyUI 平台**:作为统一的操作平台,提供可视化的工作流设计能力,便于连接不同的模块并执行端到端的任务[^2]。 #### 安装与配置流程 以下是针对 ComfyUI-IDM-VTON 项目的具体安装与配置说明: 1. **克隆项目仓库** 首先需要从指定地址获取源码文件: ```bash git clone https://gitcode.com/gh_mirrors/co/ComfyUI-IDM-VTON ``` 2. **依赖项安装** 进入项目目录后运行如下命令来安装必要的 Python 库: ```bash pip install -r requirements.txt ``` 此外还需要确认 CUDA 及 cuDNN 版本兼容性以加速 GPU 推理过程[^3]。 3. **数据准备** 准备好测试图片集(括人物照片和待试穿的衣服素材),并将它们放置于对应的输入路径下。 4. **启动服务** 使用内置脚本来加载预训练权重并初始化服务器实例: ```python python main.py --config config.yaml ``` 5. **构建工作流** 打开 ComfyUI 图形界面,在节点编辑器中拖拽相应组件完成连线设置,例如链接 DensePose 输出至 VTON 输入端口等操作。 #### 关键代码片段展示 下面给出一段简化版的核心逻辑代码示例: ```python from comfyui import load_model, inference densepose_model = load_model('path/to/densepose.pth') vton_network = load_model('path/to/vton.pth') def process(image_person, image_cloth): dense_result = densepose_model.inference(image_person) final_output = vton_network(dense_result, image_cloth) return final_output ``` 此函数接收两张分别代表顾客形象和个人喜好的服饰图案的数据矩阵形式参数,并返回融合后的合成视图结果。 #### 性能优化建议 对于大规模部署场景下的效率考量,可考虑引入 TensorRT 或 ONNX Runtime 对推理环节做进一步提速;另外也可以尝试裁剪冗余层结构从而减少计算量消耗。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值