神经网络优化---损失函数

最原始的神经元模型:
在这里插入图片描述
改进的神经元模型(该模型为基础模型):
在这里插入图片描述
神经元模型:用数学公式表示为:
在这里插入图片描述
f为激活函数。神经网络是以神经元为基本单元构成的。
激活函数:引入非线性激活因素,提高模型的表达力。
常用的激活函数有relu、sigmoid、tanh等。
激活函数relu:在tensorflow中,用tf.nn.relu()表示
relu()数学表达式
在这里插入图片描述
relu()数学图像
在这里插入图片描述
活函数sigmoid
:在Tensorflow中,用**tf.nn.sigmiod()表示
sigmoid()数学表达式
在这里插入图片描述
sigmoid()数学图像
在这里插入图片描述
激活函数 tanh:在Tensorflow中,用
tf.nn.tanh()**表示
tanh()数学表达式
在这里插入图片描述
tanh()数学图像
在这里插入图片描述
神经网络的复杂度:可用神经网络的层数和神经网络中待优化参数个数表示
神经网络的层数:一般不计入输入层,层数 = n个隐藏层 + 1个输出层
神经网络待优化的参数:神经网络中所有参数w的个数 + 所有参数b的个数

例如
在这里插入图片描述
在该神经网络中,包含1个输出层、1个隐藏层和1个输出层,该神经网络的层数为2层。
在该神经网络中,参数的个数是所有参数w的个数加上所有参数b的总数,第一层参数用三行四列的二阶张量表示(即12个线上的权重w)再加上4个偏置b;第二层参数是四行两列的二阶张量(即8个线上的权重w)再加上2个偏置b。总参数 = 34+4 + 42+2 = 26。

损失函数(loss)用来表示预测值(y)与已知答案(y_)的差距。在训练神经网络时,通过不断改变神经网络中所有参数,使损失函数不断减小,从而训练出更高准确率的神经网络模型。
常用的损失函数有均方误差自定义交叉熵等。
均方误差mse:n个样本的预测值y与已知答案y_之差的平方和,再求平均值。
在这里插入图片描述
在Tensorflow中用loss_mse = tf.reduce_mean(tf.square(y_ - y))
例如:
预测酸奶日销量y,x1和x2是影响日销量的两个因素。
应提前采集的数据有:一段时间内,每日的x1因素、x2因素和销量y_。采集的数据尽量多。
在本例中用销量预测产量,最优的产量应该等于销量。由于目前没有数据集,所以拟造了一套数据集。利用Tensorflow中函数随机生成x1、x2,制造标准答案y_=x1+x2,为了更真实,求和后还加了正负0.05的随机噪声。
我们把这套自制的数据集喂入神经网络,构建一个一层的神经网络,拟合预测酸奶日销量的函数。
代码如下:

#coding:utf-8
#预测多或预测少的影响一样
#0导入模块,生成数据集
import tensorflow as tf
import numpy as np
BATCH_SIZE = 8
SEED = 23455

rdm = np.random.RandomState(SEED)
X = rdm.rand(32,2)
Y_ = [[x1+x2+(rdm.rand()/10.0-0.05)] for (x1,x2) in X]   #rdm.rand()生成0-1之间的随机数
w1 = tf.Variable(tf.random_normal([2,1],stddev=1, seed=1))
y = tf.matmul(x,w1)

#1定义神经网络的输入、参数和输出,定义前向传播过程。
x = tf.placeholder(tf.float32, shape=(None,2))
y_ = tf.placeholder(tf.float32, shape=(None,1))
w1 = tf.Variable(tf.random_normal([2,1],stddev=1,seed=1))
y = tf.matmul(x,w1)

#定义损失函数及反向传播方法
#定义损失函数为MSE,反向传播方法为梯度下降
loss_mse = tf.reduce_mean(tf.square(y_ - y))
train_step = tf.train.GradientDescentOptimizer(0.001).minimize(loss_mse)

#3生成会话,训练STEPS轮
with tf.Session() as sess:
	init_op = tf.global_variables_initializer()
	sess.run(init_op)
	STEPS = 20000
	for i in range(STEPS):
		start = (i*BATCH_SIZE) % 32
		end = (i*BATCH_SIZE) % 32 + BATCH_SIZE
		sess.run(train_step,feed_dict={x:X[start:end], y_: Y_[start:end]})
		if i % 500 == 0:
			print "After %d training steps,w1 is: " % (i)
			print sess.run(w1), "\n"
	print "Final w1 is: \n", sess.run(w1)

运行结果如下:
在这里插入图片描述
由上述代码可知,本例中神经网络预测模型为y = w1x1 + w2x2,损失函数采用均方误差。通过使损失函数值(loss)不断降低,神经网络模型得到最终参数w1=0.98,w2=1.02,销量预测结果为y = 0.98x1 + 1.02x2.。由于在生成数据集时,标准答案为 y = x1 + x2,以你,销量预测结果和标准答案已非常接近,说明该神经网络预测酸奶日销量正确。

自定义损失函数:根据问题的实际情况,定制合理的损失函数。
例如:
对于预测酸奶日销量问题,如果预测销量大于实际销量则会损失成本;如果预测销量小于实际销量则会损失利润。在实际生活中,往往制造一盒酸奶的成本和销售一盒酸奶的利润是不等价的。因此,需要使用符合该问题的自定义损失函数。
自定义损失函数为:
在这里插入图片描述
其中,损失定义成分段函数:
在这里插入图片描述
损失函数表示,若预测结果小于标准答案y_,损失函数为利润乘以预测结果y与标准答案y_之差;若预测结果y大于标准答案y_,损失函数为成本乘以预测结果y与标准答案y_之差。
用Tensorflow函数表示为:
loss=tf.reduce_sum(tf.where(tf.greater(y,y_),COST(y-y_),PROFIT(y_-y)))
在这里插入图片描述
1)若酸奶成本为1元,酸奶销售利润为9元,则制造成本小于酸奶利润,因此希望预测的结果y多一些。采用上述的自定义损失函数,训练神经网络模型。
代码如下:

#coding:utf-8
#酸奶成本1元,酸奶利润9元
#预测少了损失大,故不要预测少,故生成的模型会多预测一些
#0导入模块,生成数据集
import tensorflow as tf
import numpy as np
BATCH_SIZE = 8
SEED = 23455
COST = 1
PROFIT = 9

rdm = np.random.RandomState(SEED)
X = rdm.rand(32,2)
Y = [[x1+x2+(rdm.rand()/10.0-0.05)] for (x1,x2) in X]

#1定义神经网络的输入、参数和输出,定义前向传播过程
x = tf.placeholder(tf.float32, shape=(None,2))
y_ = tf.placeholder(tf.float32, shape=(None,1))
w1 = tf.Variable(tf.random_normal([2,1],stddev=1,seed=1))
y = tf.matmul(x,w1)

#定义损失函数及反向传播方法
#定义损失函数使得预测少了的损失大,于是模型应该偏向多的方向预测。
loss = tf.reduce_sum(tf.where(tf.greater(y,y_),(y-y_)*COST, (y_ - y)*PROFIT))
train_step = tf.train.GradientDescentOptimizer(0.001).minimize(loss)

运行结果如下:
在这里插入图片描述
由代码执行结果可知,神经网络最终参数为w1=1.03, w2=1.05,销量预测结果为 y= 1.03x1 + 1.05x2。由此可见,采用自定义损失函数的结果大于采用均方误差预测的结果,更符合实际需求。

2)若酸奶成本为9元,酸奶销售利润为1元,则制造成本大于酸奶利润,因此希望预测结果y小一些。采用上述的自定义损失函数,训练神经网络模型。
代码如下:

#coding:utf-8
#酸奶成本9元,酸奶利润1元
#预测多了损失大,故不要预测多,故生成的模型会少预测一些
#0导入模块,生成数据集
import tensorflow as tf
import numpy as np
BATCH_SIZE = 8
SEED = 23455
COST = 9
PROFIT = 1

rdm = np.random.RandomState(SEED)
X = rdm.rand(32,2)
Y = [[x1+x2+(rdm.rand()/10.0-0.05)] for (x1,x2) in X]

#1定义神经网络的输入、参数和输出,定义前向传播过程
x = tf.placeholder(tf.float32, shape=(None,2))
y_ = tf.placeholder(tf.float32, shape=(None,1))
w1 = tf.Variable(tf.random_normal([2,1],stddev=1,seed=1))
y = tf.matmul(x,w1)

#定义损失函数及反向传播方法
#定义损失函数使得预测多了的损失大,于是模型应该偏向少的方向预测。
loss = tf.reduce_sum(tf.where(tf.greater(y,y_),(y-y_)*COST, (y_ - y)*PROFIT))
train_step = tf.train.GradientDescentOptimizer(0.001).minimize(loss)

运行结果如下:
在这里插入图片描述
由执行结果可知,神经网络最终参数为w1=0.96,w2=0.97,销量预测结果为y=0.96x1 + 0.97x2。因此,采用自定义损失函数预测的结果小于采用均方误差预测的结果,更符合实际需求。

交叉熵(Cross Entropy)表示两个概率分布之间的距离。交叉熵越大,两个概率分布距离越远,两个概率分布越相异;交叉熵越小,两个概率分布距离越近,两个概率分布越相似。
交叉熵计算公式:
在这里插入图片描述
用Tensorflow函数表示为
ce = -tf.reduce_mean(y_*tf.log(tf.clip_by_value(y,1e-12,1.0)))
例如:
两个神经网络模型解决二分类问题中,已知标准答案为y_ = (1,0),第一个神经网络模型预测结果为y1=(0.6,0.4),第二个神经网络模型预测结果为y2=(0.8,0.2),判断哪个神经网络模型预测的结果更接近标准答案。
根据交叉熵的计算公式得:
在这里插入图片描述
由于0.222>0.097,所以预测结果y2与标准答案y_更接近,y2预测更准确。

softmax函数:将n分类的n个输出(y1,y2,…yn)变为满足以下概率分布要求的函数。
在这里插入图片描述
softmax函数表示为:
在这里插入图片描述
softmax函数应用:在n分类中,模型会有n个输出,即y1,y2…yn,其中yi表示第i种情况出现的可能性大小。将n个输出经过softmax函数,可得到符合概率分布的分类结果。
在Tensorflow中,一般让模型的输出经过softmax函数,以获得输出分类的概率分布,再与标准答案对比,求出交叉熵,得到损失函数,用如下函数实现:

ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y,labels=tf.argmax(y_,1))
cem = tf.reduce_mean(ce)
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值