NumPy 迭代器对象 numpy.nditer 提供了一种灵活访问一个或者多个数组元素的方式,迭代器最基本的任务的可以完成对数组元素的访问
使用 arange() 函数创建一个 2X3 数组,并使用 nditer 对它进行迭代
In [1]: import numpy as np
In [2]: num = np.arange(6).reshape(2,3)
In [3]: num
Out[3]:
array([[0, 1, 2],
[3, 4, 5]])
In [4]: for x in np.nditer(num):
...: print(x, end=', ')
...:
0, 1, 2, 3, 4, 5,
以上实例不是使用标准 C 或者 Fortran 顺序,选择的顺序是和数组内存布局一致的,这样做是为了提升访问的效率,默认是行序优先(row-major order,或者说是 C-order)
这反映了默认情况下只需访问每个元素,而无需考虑其特定顺序。我们可以通过迭代上述数组的转置来看到这一点,并与以 C 顺序访问数组转置的 copy 方式做对比
In [5]: for x in np.nditer(num.T):
...: print(x, end=', ')
...:
0, 1, 2, 3, 4, 5,
In [6]: for x in np.nditer(num.T.copy(order='C')):
...: print(x, end=', ')
...:
0, 3, 1, 4, 2, 5,
从上述例子可以看出,a 和 a.T 的遍历顺序是一样的,也就是他们在内存中的存储顺序也是一样的,但是 a.T.copy(order = ‘C’) 的遍历结果是不同的,那是因为它和前两种的存储方式是不一样的,默认是按行访问
控制遍历顺序
-
Fortran order
:列序优先for x in np.nditer(sum, order='F'):
-
C order
:行序优先for x in np.nditer(sum.T, order='C')
原始数组
In [1]: import numpy as np
In [2]: num = np.arange(0,60,5).reshape(3,4)
In [3]: num
Out[3]:
array([[ 0, 5, 10, 15],
[20, 25, 30, 35],
[40, 45, 50, 55]])
原始数组转置
In [4]: t = num.T
In [5]: t
Out[5]:
array([[ 0, 20, 40],
[ 5, 25, 45],
[10, 30, 50],
[15, 35, 55]])
以 C 风格顺序排序
In [6]: c = t.copy(order='C')
In [7]: c
Out[7]:
array([[ 0, 20, 40],
[ 5, 25, 45],
[10, 30, 50],
[15, 35, 55]])
In [8]: for x in np.nditer(c):
...: print(x, end=', ')
...:
0, 20, 40, 5, 25, 45, 10, 30, 50, 15, 35, 55,
以 F 风格顺序排序
In [9]: f = t.copy(order='F')
In [10]: f
Out[10]:
array([[ 0, 20, 40],
[ 5, 25, 45],
[10, 30, 50],
[15, 35, 55]])
In [11]: for x in np.nditer(f):
...: print(x, end=', ')
...:
0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55,
强制 nditer 对象使用某种顺序排序
原始数组
In [1]: import numpy as np
In [2]: num = np.arange(0,60,5).reshape(3,4)
In [3]: num
Out[3]:
array([[ 0, 5, 10, 15],
[20, 25, 30, 35],
[40, 45, 50, 55]])
以 C 风格顺序排序
In [4]: for x in np.nditer(num, order='C'):
...: print(x, end=', ')
...:
0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55,
以 F 风格顺序排序
In [5]: for x in np.nditer(num, order='F'):
...: print(x, end=', ')
...:
0, 20, 40, 5, 25, 45, 10, 30, 50, 15, 35, 55,
修改数组中元素的值
nditer 对象有另一个可选参数 op_flags。 默认情况下,nditer 将视待迭代遍历的数组为只读对象(read-only),为了在遍历数组的同时,实现对数组元素值得修改,必须指定 read-write 或者 write-only 的模式
In [1]: import numpy as np
In [2]: num = np.arange(0,60,5).reshape(3,4)
In [3]: num
Out[3]:
array([[ 0, 5, 10, 15],
[20, 25, 30, 35],
[40, 45, 50, 55]])
In [4]: for x in np.nditer(num, op_flags=['readwrite']):
...: x[...] = 2 * x
...:
In [5]: num
Out[5]:
array([[ 0, 10, 20, 30],
[ 40, 50, 60, 70],
[ 80, 90, 100, 110]])
使用外部循环
nditer类的构造器拥有flags参数,它可以接受下列值
-
c_index 可以跟踪 C 顺序的索引
-
f_index 可以跟踪 Fortran 顺序的索引
-
multi-index 每次迭代可以跟踪一种索引类型
-
external_loop 给出的值是具有多个值的一维数组,而不是零维数组
迭代器遍历对应于每列,并组合为一维数组
In [1]: import numpy as np
In [2]: num = np.arange(0,60,5).reshape(3,4)
In [3]: num
Out[3]:
array([[ 0, 5, 10, 15],
[20, 25, 30, 35],
[40, 45, 50, 55]])
In [4]: for x in np.nditer(num, flags=['external_loop'], order='F'):
...: print(x, end=', ')
...:
[ 0 40 80], [10 50 90], [ 20 60 100], [ 30 70 110],
广播迭代
如果两个数组是可广播的,nditer 组合对象能够同时迭代它们。 假设数组 a 的维度为 3X4,数组 b 的维度为 1X4 ,则使用以下迭代器(数组 b 被广播到 a 的大小)
In [1]: import numpy as np
In [2]: a = np.arange(0,60,5).reshape(3,4)
In [3]: b = np.array([1,2,3,4], dtype=int)
In [4]: a
Out[4]:
array([[ 0, 5, 10, 15],
[20, 25, 30, 35],
[40, 45, 50, 55]])
In [5]: b
Out[5]: array([1, 2, 3, 4])
In [6]: for x, y in np.nditer([a, b]):
...: print('%d:%d' % (x,y), end=', ')
...:
0:1, 5:2, 10:3, 15:4, 20:1, 25:2, 30:3, 35:4, 40:1, 45:2, 50:3, 55:4,