NumPy 教程(第 10 章):数组迭代

NumPy 迭代器对象 numpy.nditer 提供了一种灵活访问一个或者多个数组元素的方式,迭代器最基本的任务的可以完成对数组元素的访问

使用 arange() 函数创建一个 2X3 数组,并使用 nditer 对它进行迭代

In [1]: import numpy as np

In [2]: num = np.arange(6).reshape(2,3)

In [3]: num
Out[3]:
array([[0, 1, 2],
       [3, 4, 5]])

In [4]: for x in np.nditer(num):
   ...:     print(x, end=', ')
   ...:
0, 1, 2, 3, 4, 5,

以上实例不是使用标准 C 或者 Fortran 顺序,选择的顺序是和数组内存布局一致的,这样做是为了提升访问的效率,默认是行序优先(row-major order,或者说是 C-order)

这反映了默认情况下只需访问每个元素,而无需考虑其特定顺序。我们可以通过迭代上述数组的转置来看到这一点,并与以 C 顺序访问数组转置的 copy 方式做对比

In [5]: for x in np.nditer(num.T):
   ...:     print(x, end=', ')
   ...:
0, 1, 2, 3, 4, 5,

In [6]: for x in np.nditer(num.T.copy(order='C')):
   ...:     print(x, end=', ')
   ...:
0, 3, 1, 4, 2, 5,

从上述例子可以看出,a 和 a.T 的遍历顺序是一样的,也就是他们在内存中的存储顺序也是一样的,但是 a.T.copy(order = ‘C’) 的遍历结果是不同的,那是因为它和前两种的存储方式是不一样的,默认是按行访问

控制遍历顺序
  • Fortran order:列序优先 for x in np.nditer(sum, order='F'):

  • C order:行序优先 for x in np.nditer(sum.T, order='C')

原始数组

In [1]: import numpy as np

In [2]: num = np.arange(0,60,5).reshape(3,4)

In [3]: num
Out[3]:
array([[ 0,  5, 10, 15],
       [20, 25, 30, 35],
       [40, 45, 50, 55]])

原始数组转置

In [4]: t = num.T

In [5]: t
Out[5]:
array([[ 0, 20, 40],
       [ 5, 25, 45],
       [10, 30, 50],
       [15, 35, 55]])

以 C 风格顺序排序

In [6]: c = t.copy(order='C')

In [7]: c
Out[7]:
array([[ 0, 20, 40],
       [ 5, 25, 45],
       [10, 30, 50],
       [15, 35, 55]])

In [8]: for x in np.nditer(c):
   ...:     print(x, end=', ')
   ...:
0, 20, 40, 5, 25, 45, 10, 30, 50, 15, 35, 55,

以 F 风格顺序排序

In [9]: f = t.copy(order='F')

In [10]: f
Out[10]:
array([[ 0, 20, 40],
       [ 5, 25, 45],
       [10, 30, 50],
       [15, 35, 55]])

In [11]: for x in np.nditer(f):
    ...:     print(x, end=', ')
    ...:
0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55,
强制 nditer 对象使用某种顺序排序

原始数组

In [1]: import numpy as np

In [2]: num = np.arange(0,60,5).reshape(3,4)

In [3]: num
Out[3]:
array([[ 0,  5, 10, 15],
       [20, 25, 30, 35],
       [40, 45, 50, 55]])

以 C 风格顺序排序

In [4]: for x in np.nditer(num, order='C'):
   ...:     print(x, end=', ')
   ...:
0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55,

以 F 风格顺序排序

In [5]: for x in np.nditer(num, order='F'):
   ...:     print(x, end=', ')
   ...:
0, 20, 40, 5, 25, 45, 10, 30, 50, 15, 35, 55,
修改数组中元素的值

nditer 对象有另一个可选参数 op_flags。 默认情况下,nditer 将视待迭代遍历的数组为只读对象(read-only),为了在遍历数组的同时,实现对数组元素值得修改,必须指定 read-write 或者 write-only 的模式

In [1]: import numpy as np

In [2]: num = np.arange(0,60,5).reshape(3,4)

In [3]: num
Out[3]:
array([[ 0,  5, 10, 15],
       [20, 25, 30, 35],
       [40, 45, 50, 55]])

In [4]: for x in np.nditer(num, op_flags=['readwrite']):
   ...:     x[...] = 2 * x
   ...:

In [5]: num
Out[5]:
array([[  0,  10,  20,  30],
       [ 40,  50,  60,  70],
       [ 80,  90, 100, 110]])
使用外部循环

nditer类的构造器拥有flags参数,它可以接受下列值

  • c_index 可以跟踪 C 顺序的索引

  • f_index 可以跟踪 Fortran 顺序的索引

  • multi-index 每次迭代可以跟踪一种索引类型

  • external_loop 给出的值是具有多个值的一维数组,而不是零维数组

迭代器遍历对应于每列,并组合为一维数组

In [1]: import numpy as np

In [2]: num = np.arange(0,60,5).reshape(3,4)

In [3]: num
Out[3]:
array([[ 0,  5, 10, 15],
       [20, 25, 30, 35],
       [40, 45, 50, 55]])

In [4]: for x in np.nditer(num, flags=['external_loop'], order='F'):
   ...:     print(x, end=', ')
   ...:
[ 0 40 80], [10 50 90], [ 20  60 100], [ 30  70 110],
广播迭代

如果两个数组是可广播的,nditer 组合对象能够同时迭代它们。 假设数组 a 的维度为 3X4,数组 b 的维度为 1X4 ,则使用以下迭代器(数组 b 被广播到 a 的大小)

In [1]: import numpy as np

In [2]: a = np.arange(0,60,5).reshape(3,4)

In [3]: b = np.array([1,2,3,4], dtype=int)

In [4]: a
Out[4]:
array([[ 0,  5, 10, 15],
       [20, 25, 30, 35],
       [40, 45, 50, 55]])

In [5]: b
Out[5]: array([1, 2, 3, 4])

In [6]: for x, y in np.nditer([a, b]):
   ...:     print('%d:%d' % (x,y), end=', ')
   ...:
0:1, 5:2, 10:3, 15:4, 20:1, 25:2, 30:3, 35:4, 40:1, 45:2, 50:3, 55:4,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值