原文章地址ubuntu14.04+GTX 1080+cuda8.0+cudnn5.1安装tensorflow-gpu
以前做实验都在自己widows上用anaconda跑,最近通过老师从学院借了一台主机,重新安装tensoflow-gpu版本。
准备工作
在安装之前请自行安装好显卡驱动和python。
由于tensorflow-gpu 1.5 及以上版本要求 CUDA 版本为9.0,如果本机安装的cuda版本是8.0,安装tensorflow-gpu 1.5及以上版本会出错。
软件
Ubuntu14.04 cuda8.0 cudnn5.1 tensorflow-gpu1.2.0
安装cuda8.0
下载cuda
在CUDA Toolkit Archive选择CUDA Toolkit 8.0 GA2,然后根据自己系统环境选择下载文件,大小为1.4G。
安装cuda
下载完成后执行以下命令:
cd ~/Download/ #进入文件保存的目录
sudo chmod +x cuda_8.0.61_375.26_linux.run
sudo sh cuda_8.0.61_375.26_linux.run
一路空格到提示信息的最后一页,然后输入以下:
Do you accept the previously read EULA?
accept/decline/quit: accept #必须accept
Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 375.26?
(y)es/(n)o/(q)uit: n #必须为n,因为我们已经安装好了显卡驱动
Install the CUDA 8.0 Toolkit?
(y)es/(n)o/(q)uit: y
Enter Toolkit Location
[ default is /usr/local/cuda-8.0 ]: #回车(默认)
Do you want to install a symbolic link at /usr/local/cuda?
(y)es/(n)o/(q)uit: y #选择yes 建立cuda软链接
Install the CUDA 8.0 Samples?
(y)es/(n)o/(q)uit: y #选择yes 安装cuda 样例程序
Enter CUDA Samples Location
[ default is /home/moulf ]: #回车(默认)
配置cuda环境变量
安装完成之后配置cuda环境变量
sudo vi ~/.bashrc
#文件末尾添加如下信息
export PATH=/usr/local/cuda-8.0/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH #注意冒号
#让配置生效
sudo source ~/.bashrc
检查安装是否成功
cd /usr/local/cuda-8.0/samples/
sudo make
cd 1_Utilities/bandwidthTest/
./bandwidthTest
结果如下图所示为pass,表示安装成功
安装cudnn5.1
在cuDNN Archive下载cudnn5.1 for cuda8.0。如果以前没注册,我们需要注册后下载。
下载完成之后,解压后得到cuda目录
sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
#更新链接
cd /usr/local/cuda/lib64/
#先通过ls查看自己版本再建立链接
sudo chmod +r libcudnn.so.5.1.10
sudo ln -sf libcudnn.so.5.1.10. libcudnn.so.5
sudo ln -sf libcudnn.so.5 libcudnn.so
sudo ldconfig
安装tensorflow-gpu
pip安装tensorflow
安装tensorflow-gpu的方法有很多种,在这里推荐通过pip安装,最方便。
# python2.7安装tensorflow-gpu1.2.0
sudo pip install tensorflow-gpu==1.2.0
# python3.5安装tensorflow-gpu1.2.0
sudo pip3 install tensorflow-gpu==1.2.0
测试安装成功
创建test.py文件
vim test.py
import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))
执行python程序
sudo python test.py #for python2.7
sudo python3 test.py #for python3.5
提示信息里包含GPU的信息表示安装成功,如下图。