结合用户特征分类和动态时间的协同过滤推荐

该文提出了一种结合用户特征分类和动态时间的协同过滤推荐方法。首先,通过用户特征信息建立用户类别树并计算用户相似性;其次,利用用户特征矩阵计算属性相似性;接着,综合用户特征和分类结果得到新的相似性;再考虑用户特征随时间的变化;同时,计算用户评分相似性;最后,融合所有相似性预测目标用户的评分。
摘要由CSDN通过智能技术生成

谢霖铨, 梁博群. 结合用户特征分类和动态时间的协同过滤推荐, 2015年10月29日[J]. 计算机工程与应用, 2015.

(1)根据用户特征信息建立用户类别树,并根据分类树计算两两用户间相似性 simf(u,v) ;
分类树
基于分类树的用户间相似度
L(hi,hj) 表示节点 i 和节点 j 具有的最大公共路径的节点个数,depth(hi) 表示节点 i 的层次。

(2)根据用户特征矩阵 T ,利用式(3)计算用户属性相似性 simAttr(u,v) ;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值