融合主题模型和协同过滤的多样化移动应用推荐

本文提出LDA_MF和LDA_CF算法,融合主题模型和矩阵分解/协同过滤。LDA_MF结合用户行为与应用主题,LDA_CF利用标签和用户行为生成推荐。最后,Hybrid_Rec混合多种算法,通过加权得分生成推荐列表。
摘要由CSDN通过智能技术生成

引用的资料:融合主题模型和协同过滤的多样化移动应用推荐

提出了将用户的主题模型和应用的主题模型与MF 相结合的LDA_MF 模型,以及将应用的标签信息和用户行为数据同时加以考虑的LDA_CF 算法。提出了融合LDA_MF,LDA_CF 以及经典的基于物品的协同过滤模型的混合推荐算法.

结合主题模型和举证分解方法的算法LDA_MF

为了将多种信息融合,增加用户兴趣表示,本文提出了结合主题模型LDA和矩阵分解MF的LDA_MF算法.LDA_MF 将用户的兴趣(利用用户有行为app 的tag 信息进行刻画)也纳入模型中,在推荐过程中,不仅仅是根据用户的下载行为学习用户和app 的隐含特征矢量,还将用户和app 的语义层面也纳入考虑范围,对于行为过少的app 信息起到补充作用.
LDA_MF模型:
LDA_MF模型
这里写图片描述
app 和用户的特征分布是接近于LDA 学习出的主题分布的,但也存在偏差值ε.所以每个用户i 的隐含特征由用户的主题分布特征θui 和偏差值 εui 构成,每个应用j 的隐含特征由主

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值