引用的资料:融合主题模型和协同过滤的多样化移动应用推荐
提出了将用户的主题模型和应用的主题模型与MF 相结合的LDA_MF 模型,以及将应用的标签信息和用户行为数据同时加以考虑的LDA_CF 算法。提出了融合LDA_MF,LDA_CF 以及经典的基于物品的协同过滤模型的混合推荐算法.
结合主题模型和举证分解方法的算法LDA_MF
为了将多种信息融合,增加用户兴趣表示,本文提出了结合主题模型LDA和矩阵分解MF的LDA_MF算法.LDA_MF 将用户的兴趣(利用用户有行为app 的tag 信息进行刻画)也纳入模型中,在推荐过程中,不仅仅是根据用户的下载行为学习用户和app 的隐含特征矢量,还将用户和app 的语义层面也纳入考虑范围,对于行为过少的app 信息起到补充作用.
LDA_MF模型:
app 和用户的特征分布是接近于LDA 学习出的主题分布的,但也存在偏差值ε.所以每个用户i 的隐含特征由用户的主题分布特征θui 和偏差值 εui 构成,每个应用j 的隐含特征由主