使用python制作ImageNet数据集

在图像分类的研究中,ImageNet具有着十分特殊的意义。其事专门针对于深度学习而提出的数据集,比机器学习的数据集(MNIST、CIFAR、SVHN、Fashion-MNIST等)要大很多。在其官网上也只是原始的图片数据集,单单是ILSVRC2012的训练集都有100多G。因此把图片放入网络并不合适。Tensorflow中也提供了将数据集处理成TfRecord类型的数据,也有人提出了如何进行处理。

1、数据集下载

有两种方法可以下载数据,
第一去官网,但是官网一般需要注册。
http://www.image-net.org/challenges/LSVRC/2012/
第二是去别人提供的网站下载:https://blog.csdn.net/qq_20481015/article/details/82912590。
其包含如下:
在这里插入图片描述
复制下面的连接到迅雷中,即可下载。速度嗨可以,但是会花一段时间。

2、脚本下载

tensorflow官方提供了生成Tfrecord的方法。可以通过以下方式下载:

git clone https://github.com/tensorflow/models.git

有人提出了放在目录:/models/research/slim (https://blog.csdn.net/Gavin__Zhou/article/details/80242998)
也有学者认为放在目录:/models/research/inception/inception/data (https://blog.csdn.net/hustlx/article/details/76585843)
事实上,都是需要如下文件:

preprocess_imagenet_validation_data.py #处理val的数据
process_bounding_boxes.py #处理boundingbox数据
build_imagenet_data.py #构建数据集主程序
imagenet_lsvrc_2015_synsets.txt
imagenet_2012_validation_synset_labels.txt
imagenet_metadata.txt

3、数据处理

-生成Tfrecord数据
参考 http://www.image-net.org/challenges/LSVRC/2012/。
假设数据存放在 models/research/slim/ImageNet-ori 目录下,TFRecord文件的输出目录是 models/research/slim/ILSVRC2012/output,当前目录是 models/research/slim。

# 创建相关目录
mkdir -p ILSVRC2012  
mkdir -p ILSVRC2012/raw-data  
mkdir -p ILSVRC2012/raw-data/imagenet-data  
mkdir -p ILSVRC2012/raw-data/imagenet-data/bounding_boxes

# 做bounding box数据
tar -xvf ImageNet-ori/ILSVRC2012_bbox_train_v2.tar.gz -C ILSVRC2012/raw-data/imagenet-data/bounding_boxes/
python process_bounding_boxes.py ILSVRC2012/raw-data/imagenet-data/bounding_boxes/ imagenet_lsvrc_2015_synsets.txt | sort > ILSVRC2012/raw-data/imagenet_2012_bounding_boxes.csv

生成imagenet_2012_bounding_boxes.csv文件,为最后的数据处理做准备。

# 做验证集(解压时间久)
mkdir -p ILSVRC2012/raw-data/imagenet-data/validation/  
tar xf ILSVRC2012_img_val.tar -C ILSVRC2012/raw-data/imagenet-data/validation/
python preprocess_imagenet_validation_data.py ILSVRC2012/raw-data/imagenet-data/validation/ imagenet_2012_validation_synset_labels.txt

将validation的图片于标签对应,分别放入不同的文件夹中。
在这里插入图片描述
共1000类,每一个文件内都包含50个JEPG图片。
由于训练集是两重的tar压缩包,因此操作不同于验证集。

# 做训练集(解压时间更久,保持耐心!)
mkdir -p ILSVRC2012/raw-data/imagenet-data/train/
# 将训练集复制到 ILSVRC2012/raw-data/imagenet-data/train/ 下,而后  cd 到此目录下进行处理
mv ImageNet-ori/ILSVRC2012_img_train.tar ILSVRC2012/raw-data/imagenet-data/train/ && cd ILSVRC2012/raw-data/imagenet-data/train/
# 解压ILSVRC2012_img_train.tar
tar -xvf ILSVRC2012_img_train.tar
# 将原始的ILSVRC2012_img_train.tar移动回原先的位置ImageNet-ori。此处应填写自己的目录
mv ILSVRC2012_img_train.tar ../../../ImageNet-ori/
# 将每一个子-tar文件解压,分别放入对应的子文件夹下
find . -name "*.tar" | while read NAE ; do mkdir -p "${NAE%.tar}"; tar -xvf "${NAE}" -C "${NAE%.tar}"; rm -f "${NAE}"; done

生成的训练集。
在这里插入图片描述

# 执行准换,注意移动到models/research/slim下,执行如下命令
python build_imagenet_data.py --train_directory=ILSVRC2012/raw-data/imagenet-data/train --validation_directory=ILSVRC2012/raw-data/imagenet-data/validation --output_directory=ILSVRC2012/output --imagenet_metadata_file=imagenet_metadata.txt --labels_file=imagenet_lsvrc_2015_synsets.txt --bounding_box_file=ILSVRC2012/raw-data/imagenet_2012_bounding_boxes.csv

最后生成TFrecord数据:
在这里插入图片描述
共128个验证集(0-127),1024个训练集(0-1023)。
-报错事宜

mv ILSVRC2012_img_train.tar ../../../ImageNet-ori/

很容易报错,必须要把原始数据集移动走。
最后的数据转换代码,必须用

python
# 而不是python3

,不然会报错。此外,将build_imagenet_data.py中第530 行的 代码

# 从shuffled_index = len(filenames)改成
shuffled_index = range(len(filenames))

-其他处理方法制作.py文件
在最后一步前,自己编写代码进行遍历操作。使用

cv2
Image (from PIL import Image )
<think>好的,用户想了解如何使用PatchCore创建自己的数据集。首先,我需要回忆一下PatchCore的相关知识。PatchCore是一种用于异常检测的模型,通常用于工业检测等场景。构建自定义数据集是关键的一步,因为模型的表现很大程度上依赖于数据的质量。 根据用户提供的引用[1],配置文件config.yaml中提到了数据集相关的设置,比如name和format。用户可能需要按照这个配置文件的结构来调整自己的数据集。例如,dataset部分的name选项有mvtec、btech、folder等,所以如果用户想用自定义数据集,可能需要选择“folder”格式,或者根据已有格式调整。 接下来,我需要确定用户的数据集结构。通常,异常检测数据集如MVTec包含训练集和测试集,训练集只有正常样本,测试集包含正常和异常样本。所以用户需要将自己的数据组织成类似的目录结构。比如,在train文件夹中放置正常图片,test文件夹中包含正常和异常的子文件夹,可能还有mask文件夹存放标注的异常区域。 然后,用户可能需要修改配置文件中的dataset部分,将name设为“folder”,并指定数据路径。同时,可能需要调整其他参数,比如图像的分辨率或预处理方式,确保与模型兼容。例如,在config.yaml中设置dataset的路径为自定义的路径,并检查是否需要调整图像的大小或归一化参数。 另外,用户可能需要编写或修改数据加载的代码。根据引用[1]中的示例,可能有一个torch_model.py文件需要处理数据加载。如果PatchCore的数据加载器默认支持folder格式,用户只需按照指定结构放置数据即可。否则,可能需要自定义Dataset类,继承已有的基类,并正确实现数据读取和预处理。 用户可能还会关心如何验证数据集是否正确加载。这时候可以建议他们使用visualization选项,比如设置show_images为True,在训练或测试过程中查看图像是否正确加载和处理。同时,检查日志或输出是否有错误信息,确保路径正确,权限无误。 可能遇到的问题包括路径错误、图像格式不支持、数据划分不正确等。需要提醒用户检查配置文件中的路径是否为绝对路径或正确的相对路径,图像格式是否为支持的格式(如PNG、JPEG),以及训练和测试集是否包含正确的样本。 最后,用户可能需要示例代码来具体操作。可以提供一个修改后的config.yaml片段,展示如何设置dataset部分,以及一个简单的数据集目录结构示例。此外,可能需要指导用户如何运行训练脚本,指定配置文件,从而使用自定义数据集进行训练和测试。 总结一下,步骤大致是:准备数据集结构→修改配置文件→调整数据加载(如有必要)→验证数据集→运行训练。需要确保每个步骤都清晰,并提供具体的示例和可能的问题解决方案。</think>以下是使用PatchCore构建自定义数据集的完整指南,基于官方配置文件的实现逻辑: ### 一、数据集准备规范 1. 创建遵循MVTec风格的数据结构: ``` 自定义数据集名称/ ├── train/ │ └── good/ # 仅包含正常样本 │ ├── 0001.png │ └── 0002.png ├── test/ │ ├── good/ # 测试正常样本 │ ├── defect_type1/ # 异常类别1 │ └── defect_type2/ # 异常类别2 └── ground_truth/ # 可选,异常标注 ├── defect_type1/ └── defect_type2/ ``` 文件组织结构需符合工业异常检测标准[^1] ### 二、配置文件修改 修改`config.yaml`中的关键参数: ```yaml dataset: name: folder # 使用自定义数据集模式 format: mvtec # 保持MVTec格式兼容 path: "/your/custom/path" # 数据集绝对路径 extension: ".png" # 根据实际格式调整 model: name: patchcore backbone: wide_resnet50_2 # 可选其他预训练主干网络 pretrained: true # 使用ImageNet预训练权重 ``` ### 三、数据加载器适配 创建`custom_loader.py`实现数据增强: ```python from torchvision.transforms import Compose, Resize, ToTensor def get_transform(image_size=256): return Compose([ Resize((image_size, image_size)), ToTensor(), lambda x: x * 2 - 1 # PatchCore标准归一化 ]) ``` ### 四、训练验证流程 1. 启动训练命令: ```bash python train.py --config config.yaml --dataset.name folder ``` 2. 验证数据加载: ```yaml # 在config.yaml中启用可视化 visualization: show_images: True # 显示前处理结果 save_images: False # 调试阶段建议关闭 ``` ### 五、常见问题排查 - 路径错误:确保使用绝对路径或正确相对路径 - 图像格式:统一为RGB格式,推荐PNG无损压缩 - 内存优化:调整`dataloader`的`num_workers`参数 - 归一化一致性:验证预处理与模型要求匹配
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值