如何从极限定义的角度理解李雅普诺夫函数的定义

我们再举个例子看一下:
x ˙ 1 ( t ) = x 2 + x 1 ( 2 − x 1 2 − x 2 2 ) x ˙ 2 ( t ) = − x 1 + x 2 ( 2 − x 1 2 − x 2 2 ) \begin{equation} \begin{aligned} \dot x_1(t)&=x_2+x_1(2-x_1^2-x_2^2)\\ \dot x_2(t)&=-x_1+x_2(2-x_1^2-x_2^2) \end{aligned} \end{equation} x˙1(t)x˙2(t)=x2+x1(2x12x22)=x1+x2(2x12x22)
求解稍微复杂一点,我们直接画出轨迹图如下:

在这里插入图片描述
显然 [ 0 0 ] \begin{bmatrix} {0}\\ {0}\end{bmatrix} [00] 是其平衡点。从轨迹图中可以看出,无论是小扰动(初始点在平衡零点附近),还是大扰动,状态轨迹最终都趋向一个固定的圆。我们套用一下李雅普诺夫稳定定义看一下,该系统是否稳定。我们不妨取 ϵ = 1 \epsilon=1 ϵ=1 ,即在零点周围画个半径为 1 1 1的圆,看看能否存在 δ \delta δ ,使得 ∥ x ( 0 ) − x e ∥ < δ {\displaystyle \|x(0)-x_e \|< \delta} x(0)xe<δ ,则对于所有的 t > 0 t>0 t>0 ,都有 ∥ x ( t ) − x e ∥ < 1 {\displaystyle \|x(t)-x_e \|<1} x(t)xe<1。显然, δ \delta δ 是不存在的,因此,该系统是不稳定的。

如何理解这句话:我们不妨取 ϵ = 1 \epsilon=1 ϵ=1 ,即在零点周围画个半径为 1 1 1的圆,看看能否存在 δ \delta δ ,使得 ∥ x ( 0 ) − x e ∥ < δ {\displaystyle \|x(0)-x_e \|< \delta} x(0)xe<δ ,则对于所有的 t > 0 t>0 t>0 ,都有 ∥ x ( t ) − x e ∥ < 1 {\displaystyle \|x(t)-x_e \|<1} x(t)xe<1。显然, δ \delta δ 是不存在的,因此,该系统是不稳定的。

在这里插入图片描述

这句话的内在逻辑是用来判断一个系统是否稳定的。系统稳定的定义是,当系统受到扰动时,它能否恢复到原来或者新的平衡状态1。为了检验系统是否稳定,我们可以用极限法2,即给定一个任意小的正数 ϵ \epsilon ϵ ,看看是否存在另一个正数 δ \delta δ ,使得当初始状态 x ( 0 ) x(0) x(0) 和平衡状态 x e x_e xe距离小于 δ \delta δ 时,对于所有的时间 t > 0 t>0 t>0 ,系统状态 x ( t ) x(t) x(t) 和平衡状态 x e x_e xe 的距离都小于 ϵ \epsilon ϵ 。如果存在这样的 δ \delta δ ,则系统是稳定的;如果不存在,则系统是不稳定的。

这句话中,我们不妨取 ϵ = 1 \epsilon=1 ϵ=1 ,即在零点周围画个半径为 1 1 1 的圆,看看能否存在 δ \delta δ ,使得 ∣ x ( 0 ) − x e ∣ < δ {\displaystyle |x(0)-x_e |< \delta} x(0)xe<δ ,则对于所有的 t > 0 t>0 t>0 ,都有 ∣ x ( t ) − x e ∣ < 1 {\displaystyle |x(t)-x_e |<1} x(t)xe<1 。显然, δ \delta δ 是不存在的,因此,该系统是不稳定的。**这就意味着,无论我们把初始状态选得多么接近平衡状态(只要不完全相等),只要时间足够长,系统状态都会偏离平衡状态超过一个单位。**这样的系统是不能恢复到原来或者新的平衡状态的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值