傅里叶变换的资料(自mark)

最近想学小波分析,得先学下傅里叶变换,mark一下资料。

之前看的是MIT的一个课程,但太久了就忘掉了,这次在B站上找到一个精华版的公式推导,感觉很不错。
该系列是up主DR_CAN制作的,从三角函数的正交性,讲到周期分别为2pi,2T到无穷的函数展开,讲到傅里叶级数,再讲到傅里叶变换。都是公式推导。虽然一些定理上直接给出而没有证明,但对于工科要初步理解掌握傅里叶变换已经够用。

纯干货数学推导_傅里叶级数与傅里叶变换_Part1_三角函数的正交性
纯干货数学推导_傅里叶级数与傅里叶变换_Part2_周期为2Pi的函数展开
纯干货数学推导_傅里叶级数与傅里叶变换_Part3_周期为2L的函数展开
纯干货数学推导_傅里叶级数与傅里叶变换_Part4_傅里叶级数的复数形式
纯干货数学推导_傅里叶级数与傅里叶变换_Part5_从傅里叶级数推导傅里叶变换
纯干货数学推导_傅里叶级数与傅里叶变换_Part6_总结与闲话(完)

看完这个后, 想继续学下FFT。首先得先学习一下离散傅里叶变换DFT,暂时打算先看下另一个up主的视频:
离散傅里叶变换零基础入门-中文1(针对工科生,无需连续傅立叶变换知识)
但依然不是很好懂,最后只能去youtube上面找,排行比较高的几个视频如下:
Video1: Discrete Fourier Transform - Simple Step by Step - by Simon Xu
The Discrete Fourier Transform (DFT) - by Steve Brunton
The Fast Fourier Transform (FFT) - by Steve Brunton

知识整理

傅里叶级数
基本概念就是认为函数可以用一系列三角函数表示
f ( t ) = 1 2 a 0 + ∑ k = 1 ∞ ( a k cos ⁡ 2 π k t + b k sin ⁡ 2 π k t ) (1) f(t)=\frac{1}{2} a_{0}+\sum_{k=1}^{\infty}\left(a_{k} \cos 2 \pi k t+b_{k} \sin 2 \pi k t\right) \tag{1} f(t)=21a0+k=1(akcos2πkt+bksin2πkt)(1)

连续傅里叶变换
X ( F ) = ∫ − ∞ ∞ x ( t ) e − j 2 π F t d t (2) X(F)=\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi F t} d t \tag{2} X(F)=x(t)ej2πFtdt(2)
采用复数来表示的话,能使得原本两个的实数只需要一个复数就可以表示(目的都是为了同时表示赋值和相位差),并且求解系数只需要做一次积分即可

当然在实际工程应用中,并不会取无穷区间进行连续积分,因为一般要分析的数据或信号都是有限时间里离散取样的,如下
from Vidwo1 1
因此这是就需要用到离散傅里叶变换DFT
X k = ∑ n = 0 N − 1 x n ⋅ e − j 2 π k n N (3) X_{k}=\sum_{n=0}^{N-1} x_{n} \cdot e^{-\frac{j 2 \pi k n}{N}} \tag{3} Xk=n=0N1xneNj2πkn(3)
注意到N指代有N个信号采样。对比上面两个式子(2)和(3),发现连续傅里叶变换的F变成了k/N,t变成n。
为了方便,将式(3)中指数里的 2 π k n N \frac{2\pi kn}{N} N2πkn写作 b n b_n bn
则在第k个频率上的系数可写成
X k = x 0 e − b 0 j + x 1 e − b 1 j + … + x n e − b N − 1 j (4) X_{k}=x_{0} e^{-b_{0} j}+x_{1} e^{-b_{1} j}+\ldots+x_{n} e^{-b_{N-1} j} \tag{4} Xk=x0eb0j+x1eb1j++xnebN1j(4)
当然具体的相加可以用欧拉公式
e j x = cos ⁡ x + j sin ⁡ x (5) e^{jx}=\cos{x}+j\sin{x}\tag{5} ejx=cosx+jsinx(5)
则计算完后可得到 X k X_k Xk,需要注意的是这个系数是复数。
我们表示成
X k = A k + B k j X_k=A_k+B_kj Xk=Ak+Bkj
在复数坐标系下看这个数,其大小,也就是幅值可表示为 A k 2 + B k 2 \sqrt{A_k^2+B_k^2} Ak2+Bk2 ,角度也就是相位则表示为 θ = arctan ⁡ B k A k \theta =\arctan{\frac{B_k}{A_k}} θ=arctanAkBk
则通过公式(4),可以得到对应不同k的一个系数。
还记得对应k对应的频率F,其实是为k/N.对于一个区间为T,采样数为N的信号,则 X k , k = 1 , 2... X_k,k=1,2... Xkk=1,2...对应的是频率为1/T,2/T…
而且还需要注意的是,X_k在坐标轴k上其实是对称的。则 X k = X N − k X_k=X_{N-k} Xk=XNk 。因为我们观察一下,因为cos和sin都是周期为2pi的函数,则 e − j x e^{-jx} ejx也具有2pi的周期性质。所以在式(4)中,观察 X k X_k Xk X N − k X_{N-k} XNk里的 b i b_i bi,分别为 2 π k n N \frac{2\pi kn}{N} N2πkn 2 π ( N − k ) n N \frac{2\pi (N-k)n}{N} N2π(Nk)n,代入欧拉公式
e − j 2 π ( N − k ) n N = cos ⁡ ( − 2 π ( N − k ) n N ) + j sin ⁡ ( − 2 π ( N − k ) n N ) e^{-j\frac{2\pi (N-k)n}{N}}=\cos{(-\frac{2\pi (N-k)n}{N})}+j\sin{(-\frac{2\pi (N-k)n}{N})} ejN2π(Nk)n=cos(N2π(Nk)n)+jsin(N2π(Nk)n)

e − j 2 π ( N − k ) n N = cos ⁡ ( − 2 π k n N ) − j sin ⁡ ( − 2 π k n N ) e^{-j\frac{2\pi (N-k)n}{N}}=\cos{(-\frac{2\pi kn}{N})}-j\sin{(-\frac{2\pi kn}{N})} ejN2π(Nk)n=cos(N2πkn)jsin(N2πkn)
可发现N-k和k的基函数进行比较,实部完全相同,虚部只是符号相反而已,这样最后得到的复数模其实是一样的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值