单项式
1.一个单独的数或变量或它们的乘积,这样的式子叫做单项式
2.单独的一个数或者一个字母也是单项式
幂 { 底数 ←aⁿ→指数
3.一个单项式中,所有字母的指数的和叫做这个单项式的次数
4.单项式的系数要包括前面的负号
5.在含有字母的式子中出现乘号,通常将乘号写作“·”或省略不写
多项式
1.几个单项式的和叫做多项式
2.在多项式中,每个单项式叫做多项式的项
3.在多项式中,不含字母的项叫做常数项
4.多项式里,次数最高项的次数,叫做这个多项式的次数
5.多项式的每一项都包括它前面的符号
6.整式的概念:单项式与多项式统称整式
7.所含字母相同,并且相同字母的指数也相同的项叫做同类项(与系数无关,与字母顺序无关)
8.几个常数项也是同类项
合并同类项
1.定义:把多项式中的同类项合并成一项
2.法则:(1)系数:系数相加
(2)字母:字母和字母的指数不变
乘法分配律:a(b+c)=ab+ac
整式的乘法
单项式与单项式相乘,只需要将系数相乘,再将变量部分按照幂的运算法则相乘
-
系数相乘:将两个单项式的系数相乘。
-
变量部分相乘:对于相同的变量,将其指数相加。
(1)整式乘法指的是两个多项式相乘,可以通过分配律逐项相乘,然后合并同类项来完成。
(2)逐项相乘:将每一个多项式的每一项分别与另一个多项式的每一项相乘。
(3)合并同类项:将相同次数的项相加。
整式的除法
单项式与单项式相除
-
系数相除:将两个单项式的系数相除。
-
变量部分相除:对于相同的变量,将其指数相减。
整式除法可以使用多项式长除法或者合并同类项的方法进行。
-
确定首项:将被除多项式的最高次项除以除式的最高次项,得到商式的首项。
-
逐项相减:将商式的首项乘以除式,然后从被除式中减去,得到新的被除式。
-
重复步骤:对新的被除式重复以上步骤,直到被除式的次数小于除式的次数。
因式分解
因式分解是将一个多项式表示为若干个多项式的乘积的方法
1.提取公因式
如果多项式的每一项都有一个共同的因子,可以将这个因子提取出来。
例: 6x³ + 9x² - 3x
提取公因式 3x :
3x(2x² + 3x - 1)
2.平方差公式
平方差公式:( a² - b² = ( a - b) ( a + b) )
例: x² - 9
可以写成: (x² - 3²)
应用平方差公式:( x - 3 ) ( x + 3 )
3.完全平方公式
完全平方公式是( a² + 2ab + b² = ( a + b ) ² ) 或 ( a² - 2ab + b² = ( a - b ) ² )
例: x² + 6x + 9
可以写成: x² + 2 · 3 · x + 3²
应用完全平方公式: ( x + 3 ) ²
4.组合法
当多项式有四项或更多项时,可以尝试通过分组来因式分解
例:x³ + 3x² + 2x + 6
分组: ( x³ + 3x² ) + ( 2x + 6 )
提取公因式: x² ( x + 3 ) + 2 ( x + 3 )
提取 ( x + 3 ) :
( x + 3 ) ( x² + 2 )
5.十字相乘法(适用于二次三项式)
十字相乘法是用于分解形如 ax² + bx + c 的二次多项式
例: x² + 5x + 6
找到两个数,使它们的乘积为 6(常数项),和为 5(一次项系数)。
2×3=6 2+3=5
所以: x² + 5x + 6 = ( x + 2 ) ( x + 3 )
6.分解三次多项式(Ruffini定理)
当多项式的次数较高时,可以通过Ruffini定理(或称合成除法)找出一个因子,然后将多项式降次。
例: x³ - 6x² + 11x - 6
通过试根定理可以发现 x=1x 是这个多项式的一个根。
将 x³ - 6x² + 11x - 6 除以 ( x - 1 ) ,得到:
x³ - 6x² + 11x - 6 = ( x - 1 ) ( x² - 5x + 6 )
然后对x²-5x+6继续因式分解
x² -5x + 6 = ( x - 2 ) ( x - 3 )
所以: x³ - 6x² + 11x - 6 = ( x - 1 ) ( x - 2 ) ( x - 3 )
7. 分解多项式中的高次项
我们需要处理较高次项的多项式,这时可以使用一些高级的方法,比如多项式的降次、配方法等。
例: x 4 -1
可以写成 :( x² ) ² - 1²
应用平方差公式: ( x² - 1 ) ( x² + 1 )
继续分解 (x² - 1 )
( x² - 1 ) = ( x - 1 ) ( x + 1 )
所以: x 4 - 1 = ( x - 1 ) ( x + 1 ) ( x² + 1 )