整式的学习

单项式

1.一个单独的数或变量或它们的乘积,这样的式子叫做单项式

2.单独的一个数或者一个字母也是单项式

 幂 { 底数 ←aⁿ→指数

3.一个单项式中,所有字母的指数的和叫做这个单项式的次数

4.单项式的系数要包括前面的负号

5.在含有字母的式子中出现乘号,通常将乘号写作“·”或省略不写

多项式

1.几个单项式的和叫做多项式

2.在多项式中,每个单项式叫做多项式的项

3.在多项式中,不含字母的项叫做常数项

4.多项式里,次数最高项的次数,叫做这个多项式的次数

5.多项式的每一项都包括它前面的符号

6.整式的概念:单项式与多项式统称整式 

7.所含字母相同,并且相同字母的指数也相同的项叫做同类项(与系数无关,与字母顺序无关)

8.几个常数项也是同类项

合并同类项

1.定义:把多项式中的同类项合并成一项

2.法则:(1)系数:系数相加

(2)字母:字母和字母的指数不变

乘法分配律:a(b+c)=ab+ac

整式的乘法

单项式与单项式相乘,只需要将系数相乘,再将变量部分按照幂的运算法则相乘

  • 系数相乘:将两个单项式的系数相乘。

  • 变量部分相乘:对于相同的变量,将其指数相加

(1)整式乘法指的是两个多项式相乘,可以通过分配律逐项相乘,然后合并同类项来完成。

(2)逐项相乘:将每一个多项式的每一项分别与另一个多项式的每一项相乘。

(3)合并同类项:将相同次数的项相加。

整式的除法

单项式与单项式相除

  • 系数相除:将两个单项式的系数相除。

  • 变量部分相除:对于相同的变量,将其指数相减

整式除法可以使用多项式长除法或者合并同类项的方法进行。

  1. 确定首项:将被除多项式的最高次项除以除式的最高次项,得到商式的首项。

  2. 逐项相减:将商式的首项乘以除式,然后从被除式中减去,得到新的被除式。

  3. 重复步骤:对新的被除式重复以上步骤,直到被除式的次数小于除式的次数。

因式分解

因式分解是将一个多项式表示为若干个多项式的乘积的方法

1.提取公因式

如果多项式的每一项都有一个共同的因子,可以将这个因子提取出来。

例: 6x³ + 9x² - 3x

提取公因式 3x :

3x(2x² + 3x - 1)

2.平方差公式

平方差公式:( a² - b² = ( a - b) ( a + b) )

例: x² - 9

可以写成: (x² - 3²)

应用平方差公式:( x - 3 ) ( x + 3 )

3.完全平方公式

完全平方公式是( a² + 2ab + b² = ( a + b ) ² )  或  ( a² - 2ab + b² = ( a - b ) ² )

例: x² + 6x + 9

可以写成: x² + 2 · 3 · x + 3²

应用完全平方公式: ( x + 3 ) ²

4.组合法

当多项式有四项或更多项时,可以尝试通过分组来因式分解

例:x³ + 3x² + 2x + 6

分组:  ( x³ + 3x² ) + ( 2x + 6 )

提取公因式: x² ( x + 3 ) + 2 ( x + 3 )

提取 ( x + 3 ) :

( x + 3 ) ( x² + 2 )

5.十字相乘法(适用于二次三项式)

十字相乘法是用于分解形如 ax² + bx + c 的二次多项式

例: x² + 5x + 6

找到两个数,使它们的乘积为 6(常数项),和为 5(一次项系数)。

2×3=6     2+3=5

所以: x² + 5x + 6 = ( x + 2 ) ( x + 3 )

6.分解三次多项式(Ruffini定理)

当多项式的次数较高时,可以通过Ruffini定理(或称合成除法)找出一个因子,然后将多项式降次。

例: x³ - 6x² + 11x - 6

通过试根定理可以发现 x=1x 是这个多项式的一个根。

将 x³ - 6x² + 11x - 6 除以 ( x - 1 ) ,得到:

x³ - 6x² + 11x - 6 = ( x - 1 ) ( x²  - 5x + 6 )

然后对x²-5x+6继续因式分解

x² -5x + 6 = ( x - 2 ) ( x - 3 )

所以:   x³ - 6x² + 11x - 6 = ( x - 1 ) ( x - 2 ) ( x - 3 )

7. 分解多项式中的高次项

我们需要处理较高次项的多项式,这时可以使用一些高级的方法,比如多项式的降次、配方法等。

例: x 4 -1

可以写成  :( x² ) ² - 1²

应用平方差公式: ( x² - 1 ) ( x² + 1 )

继续分解 (x² - 1 )

( x² - 1 ) = ( x - 1 ) ( x + 1 )

所以: x 4 - 1 = ( x - 1 ) ( x + 1 ) ( x² + 1 )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值