The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified exp

CK+数据库扩展了Cohn-Kanade数据库,提供完整的情感和FACS编码,用于面部表情和动作单元(AU)检测研究。文章介绍了数据集的详细信息,包括正面和侧面视图的图像序列,以及基线系统,该系统使用AAM和SVM进行面部表情和情感分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

              The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression

摘要:

2000年,Cohn-Kanade(CK)数据库被发布,目的是促进自动检测个人面部表情的研究。此后,CK数据库已经成为最广泛使用的算法开发和评估测试平台之一。在这段时间里,这些清晰度已经变得很明显:1)虽然AU代码得到很好的验证,但情感标签并不是指所要求的,而不是实际执行的内容; 2)缺乏评估的常见性能指标新算法,以及3)普通数据库的标准协议尚未出现。因此,CK数据库已被用于AU和情感检测(尽管后者的标签尚未得到验证),与基准算法的比较缺失,原始数据库的随机子集的使用使得meta分析困难。为了解决这些和其他问题,我们提供了扩展Cohn-Kanade(CK +)数据库。序列数增加了22%,受试者数量增加了27%。每个序列的目标表达式完全是FACS编码的,情感标签已被修改和验证。除此之外,还添加了几种类型的微笑的非提交序列及其相关元数据。我们使用活动外观模型(AAM)和线性支持向量机(SVM)分类器使用用于所提供的数据的AU和情感检测的leaveone-out对象交叉验证来呈现基线结果。情感和AU标签,以及扩展的图像数据和跟踪的地标将于2010年7月提供。

1、引言:

自动检测面部表情已成为越来越重要的研究领域。 它涉及计算机视觉,机器学习和行为科学,可用于许多应用。

### 关于 Cohn-Kanade 数据集的信息 #### 数据集概述 The Extended Cohn-Kanade Dataset (CK+) 是一种广泛用于面部表情分析的研究数据集,提供了针对动作单元(Action Units, AU)和特定情感表达的全面标注[^1]。该数据集扩展了原始的 Cohn-Kanade 数据集,增加了更多样化的样本以及更详细的标签信息。 #### 下载方式 CK+ 数据集可以通过官方渠道申请下载。通常情况下,研究人员需要填写一份协议书并获得授权才能获取完整的数据集文件[^2]。具体流程可能包括注册账户、签署数据使用协议以及支付少量费用以支持数据维护工作。 #### 使用说明 在 CK+ 中,每一段视频序列记录了一个受试者的自然情绪变化过程,从平静状态逐渐过渡至目标表情。为了便于处理,这些视频被分割成了若干帧图片,并附带相应的 AU 编码及情感类别标记。以下是基本的使用指南: - **读取数据**: 可利用 Python 或 MATLAB 脚本加载图像文件夹中的 PNG 文件。 - **预处理**: 对齐人脸位置,裁剪无关背景区域;标准化像素值范围以便后续模型训练。 - **划分训练测试集合**: 根据实验设计随机分配或者按照时间顺序分离验证子集。 ```python import os from skimage import io def load_images_from_folder(folder): images = [] for filename in os.listdir(folder): img_path = os.path.join(folder,filename) if img_path.endswith(".png"): image_data = io.imread(img_path) images.append(image_data) return images ``` 上述代码片段展示了如何批量导入指定目录下的所有 PNG 图像作为 NumPy 数组列表存储起来供进一步操作之用[^3]。 #### 主要特征 - 包含多种基础人类脸部微小变动描述符即所谓的 Action Unit(AU),能够精确反映复杂心理活动背后肌肉群动态调整情况。 - 提供详尽的情绪分类体系覆盖愤怒、厌恶、恐惧、快乐等多种典型反应形式。 - 设计之初就考虑到跨文化差异因素影响从而采集自不同种族背景参与者贡献素材构成最终版本内容更加丰富多元适配全球化应用场景需求特点明显突出表现优异值得推荐尝试体验一番看看效果到底怎么样呢?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值