A color reduction is a mapping from a set of discrete colors to a smaller one. The solution to this problem requires that you perform just such a mapping in a standard twenty-four bit RGB color space. The input consists of a target set of sixteen RGB color values, and a collection of arbitrary RGB colors to be mapped to their closest color in the target set. For our purposes, an RGB color is defined as an ordered triple (R,G,B) where each value of the triple is an integer from 0 to 255. The distance between two colors is defined as the Euclidean distance between two three-dimensional points. That is, given two colors (R1,G1,B1) and (R2,G2,B2), their distance D is given by the equation
If there are more than one color with the same smallest distance, please output the color given first in the color set.
0 0 0 255 255 255 0 0 1 1 1 1 128 0 0 0 128 0 128 128 0 0 0 128 126 168 9 35 86 34 133 41 193 128 0 128 0 128 128 128 128 128 255 0 0 0 1 0 0 0 0 255 255 255 253 254 255 77 79 134 81 218 0 -1 -1 -1
(0,0,0) maps to (0,0,0) (255,255,255) maps to (255,255,255) (253,254,255) maps to (255,255,255) (77,79,134) maps to (128,128,128) (81,218,0) maps to (126,168,9)
输入的前16行是给定的16bit的数据集合、你要从第17行开始、每一组数据对应前16行中D最小的的数据、然后照着样例输出、
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
struct node
{
int R,G,B;
}a[17];
int main()
{
int res,i_res,r,g,b;
for(int i=0;i<16;i++)
{
scanf("%d %d %d",&a[i].R,&a[i].G,&a[i].B);
}
while(~scanf("%d %d %d",&r,&g,&b))
{
if(r==-1&&g==-1&&b==-1)
break;
res=(r-a[0].R)*(r-a[0].R)+(g-a[0].G)*(g-a[0].G)+(b-a[0].B)*(b-a[0].B);
i_res=0;
for(int i=1;i<16;i++)
{
if(((r-a[i].R)*(r-a[i].R)+(g-a[i].G)*(g-a[i].G)+(b-a[i].B)*(b-a[i].B))<res)
{
res=(r-a[i].R)*(r-a[i].R)+(g-a[i].G)*(g-a[i].G)+(b-a[i].B)*(b-a[i].B);
i_res=i;
}
}
printf("(%d,%d,%d) maps to (%d,%d,%d)\n",r,g,b,a[i_res].R,a[i_res].G,a[i_res].B);
}
return 0;
}