scikit-learn 逻辑回归

逻辑回归官方使用文档:https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression

class sklearn.linear_model.LogisticRegression(penalty=’l2’, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver=’warn’, max_iter=100, multi_class=’warn’, verbose=0, warm_start=False, n_jobs=None)

参数:

dual : bool, default: False

对偶或原始公式。 昂实用对偶形式时,仅使用liblinear解算器实现l2惩罚。 当n_samples> n_features时,首选dual = False。

intercept_scaling : float, default 1.

仅在使用求解器“liblinear”且self.fit_intercept设置为True时有用。 在这种情况下,x变为[x,self.intercept_scaling],即具有等于intercept_scaling的常数值的“合成”特征被附加到实例矢量。 截距变为intercept_scaling * synthetic_feature_weight(合成特征权重)。

注意! 合成特征权重与所有其他特征一样经受l1 / l2正则化。 为了减小正则化对合成特征权重(并因此对截距)的影响,必须增加intercept_scaling。

solver : str, {‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’}, default: ‘liblinear’.

用于优化问题的算法。(学习算法)

  • 对于小数据集,'liblinear'是一个不错的选择,而'sag'和'saga'对于大数据集来说更快。
  • 对于多类问题,只有'newton-cg','sag','saga'和'lbfgs'处理多项式损失; 'liblinear'仅限于ovr方案。
  • 'newton-cg','lbfgs'和'sag'只处理L2惩罚,而'liblinear'和'saga'处理L1惩罚。

请注意,“sag”和“saga”快速收敛仅在具有大致相同比例的范围上得到保证。 您可以使用sklearn.preprocessing中的缩放器预处理数据。

 

New in version 0.17: Stochastic Average Gradient descent solver.

New in version 0.19: SAGA solver.

Changed in version 0.20: Default will change from ‘liblinear’ to ‘lbfgs’ in 0.22.

warm_start : bool, default: False

设置为True时,重用上一次调用的解决方案以适合初始化,否则,只需擦除以前的解决方案。 对于liblinear解算器没用。 请参阅词汇表。

New in version 0.17: warm_start to support lbfgs, newton-cg, sag, saga solvers.

n_jobs : int or None, optional (default=None)

如果multi_class ='ovr'“,则在对类进行并行化时使用的CPU核心数。 无论是否指定了“multi_class”,当求解器设置为“liblinear”时,都会忽略此参数。 None表示1。 -1表示使用所有处理器。 有关详细信息,请参阅词汇表。

要使用scikit-learn进行逻辑回归的训练,可以按照以下步骤进行操作: 1. 导入所需的库和模块:首先需要导入scikit-learn库中的逻辑回归模块。可以使用以下代码导入: ```python from sklearn.linear_model import LogisticRegression ``` 2. 准备数据集:接下来,需要准备用于训练的数据集。将数据集拆分为特征矩阵X和目标变量y。确保数据集已经经过预处理和特征工程。 3. 创建逻辑回归模型对象:使用LogisticRegression()函数创建一个逻辑回归模型对象。可以根据需要设置模型的参数,比如正则化参数C、求解器solver等。 4. 训练模型:使用fit()函数将数据集(X, y)传入模型对象,进行模型的训练。该函数将自动拟合逻辑回归模型,并根据提供的数据进行参数估计。 5. 进行预测:训练完成后,可以使用训练好的模型进行预测。使用predict()函数,将测试集或新样本的特征矩阵X传入模型对象,得到预测结果。 下面是一个示例代码,展示了如何使用scikit-learn进行逻辑回归的训练和预测: ```python from sklearn.linear_model import LogisticRegression # 准备数据集 X_train = ... y_train = ... X_test = ... # 创建逻辑回归模型对象 model = LogisticRegression() # 训练模型 model.fit(X_train, y_train) # 进行预测 y_pred = model.predict(X_test) ``` 这样,你就可以使用scikit-learn逻辑回归模块进行训练和预测了。请注意,在实际应用中,还需要进行模型评估、参数调优等步骤来提高模型性能。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [机器学习之PyTorch和Scikit-Learn第3章 使用Scikit-Learn的机器学习分类器之旅Part 1](https://blog.csdn.net/ardor123/article/details/130378951)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值