MongoDB 中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果。
有点类似 SQL 语句中的 count(*)。
聚合通常是一系列操作,类似与linux管道的概念,后续的操作都会基于前一个操作的结果进行处理。
例如我用如下结构体表示一个企业的员工
type Staff struct {
Name string `bson:"name"`
Sex string `bson:"sex"`
Age int `bson:"age"`
int `bson:"jobcount"`
}
现在有一个需求是查询从事的每个工种的男员工的人数,可用如下golang代码实现:
package main
import (
"context"
"fmt"
"go.mongodb.org/mongo-driver/bson"
"go.mongodb.org/mongo-driver/mongo"
"go.mongodb.org/mongo-driver/mongo/options"
)
const (
MongoUrl = "mongodb://localhost:27017"
DataBaseName = "company"
CollectionName = "department"
)
type Staff struct {
Name string `bson:"name"`
Sex string `bson:"sex"`
Age int `bson:"age"`
Job string `bson:"job"`
}
func ConnectDatabase() (*mongo.Client, error) {
ctx := context.Background()
client, err := mongo.Connect(ctx, options.Client().ApplyURI(MongoUrl))
if err != nil {
return nil, err
}
if err = client.Ping(ctx, nil); err != nil {
return nil, err
}
return client, nil
}
func main() {
ctx := context.Background()
client, err := ConnectDatabase()
if err != nil {
fmt.Printf("connect data base error %v\n", err)
return
}
collection := client.Database(DataBaseName).Collection(CollectionName)
members := []any{
Staff{Name: "xiaoming", Sex: "man", Age: 21, Job: "sales"},
Staff{Name: "xiaohong", Sex: "woman", Age: 25, Job: "sales"},
Staff{Name: "xiaoming", Sex: "man", Age: 27, Job: "sales"},
Staff{Name: "zhangsan", Sex: "man", Age: 32, Job: "engineer"},
Staff{Name: "lisi", Sex: "man", Age: 50, Job: "engineer"},
Staff{Name: "wangwu", Sex: "man", Age: 42, Job: "engineer"},
Staff{Name: "zhaoliu", Sex: "man", Age: 37, Job: "sales"},
Staff{Name: "linqi", Sex: "man", Age: 21, Job: "sales"},
Staff{Name: "feifei", Sex: "woman", Age: 37, Job: "engineer"},
Staff{Name: "lingling", Sex: "woman", Age: 57, Job: "engineer"},
}
if _, err := collection.InsertMany(ctx, members); err != nil {
fmt.Printf("insert error %v\n", err)
return
}
matchStage := bson.D{{"$match", bson.D{{"sex", bson.D{{"$eq", "man"}}}}}}
groupStage := bson.D{{"$group", bson.D{
{"_id", "$job"},
{"staffcount", bson.D{{"$sum", 1}}},
}}}
pipeline := mongo.Pipeline{matchStage, groupStage}
if cursor, err := collection.Aggregate(ctx, pipeline); err != nil {
fmt.Printf("aggrate error %v\n", err)
} else {
var staffs []bson.M
if err = cursor.All(ctx, &staffs); err != nil {
fmt.Printf("cursor error %v\n", err)
} else {
fmt.Printf("%v\n", staffs)
}
}
}
聚合的一些常用表达式如下:
达式 | 描述 | 实例 |
---|---|---|
$sum | 计算总和 | db.mycol.aggregate([{$group : {_id : "$name", num_tutorial : {$sum : "$age"}}}]) |
$avg | 计算平均值 | db.mycol.aggregate([{$group : {_id : "$name", num_tutorial : {$avg : "$age"}}}]) |
$min | 获取集合中所有文档对应值得最小值。 | db.mycol.aggregate([{$group : {_id : "$name", num_tutorial : {$min : "$age"}}}]) |
$max | 获取集合中所有文档对应值得最大值。 | db.mycol.aggregate([{$group : {_id : "$name", num_tutorial : {$max : "$age"}}}]) |
$push | 将值加入一个数组中,不会判断是否有重复的值。 | db.mycol.aggregate([{$group : {_id : "$name", url : {$push: "$url"}}}]) |
$addToSet | 将值加入一个数组中,会判断是否有重复的值,若相同的值在数组中已经存在了,则不加入。 | db.mycol.aggregate([{$group : {_id : "$name", url : {$addToSet : "$url"}}}]) |
$first | 根据资源文档的排序获取第一个文档数据。 | db.mycol.aggregate([{$group : {_id : "$name", first_url : {$first : "$url"}}}]) |
$last | 根据资源文档的排序获取最后一个文档数据 | db.mycol.aggregate([{$group : {_id : "$name", last_url : {$last : "$url"}}}]) |
聚合框架中的一些常用操作如下:
- $project:修改输入文档的结构。可以用来重命名、增加或删除域,也可以用于创建计算结果以及嵌套文档。
- $match:用于过滤数据,只输出符合条件的文档。$match使用MongoDB的标准查询操作。
- $limit:用来限制MongoDB聚合管道返回的文档数。
- $skip:在聚合管道中跳过指定数量的文档,并返回余下的文档。
- $unwind:将文档中的某一个数组类型字段拆分成多条,每条包含数组中的一个值。
- $group:将集合中的文档分组,可用于统计结果。
- $sort:将输入文档排序后输出。
- $geoNear:输出接近某一地理位置的有序文档。