【微软研究院 && 含源码】相比黑盒模型,可解释模型同样可以获得理想的性能

来源: AINLPer 微信公众号(每日论文干货分享!!
编辑: ShuYini
校稿: ShuYini
时间: 2022-09-29

引言

 深度学习模型取得了显著的预测性能,但往往牺牲了可解释性。正因缺乏模型可解释性,这就导致一些应用领域(例如:医疗诊断、决策判断、案件审判等)不敢轻易相信模型的结果。为此本文提出了Emb-GAM,它可以在不牺牲可解释性的情况下实现了强大的预测性能论文源码连接在后面

背景介绍

 深度神经网络(DNNs)由于能够学习复杂的、非线性变量之间的关系,展示了显著的预测性能。然而,由于人类无法理解这些关系导致 DNN 被称为黑匣子,通常限制了它们在科学、医学和政策制定等高风险应用中的使用。 此外,在用户面临公平和监管压力等问题的时候,DNN等黑盒模型(不可解释模型)的使用受到越来越多的审查

 作为黑盒模型的替代方案,透明模型(例如广义加法模型和基于规则的模型)能够保持可解释性。 除此之外,透明模型往往比黑盒模型更快,计算效率更高。 虽然透明模型有时可以像黑盒模型一样执行,但在自然语言处理 (NLP) 等许多环境中,透明模型和黑盒模型之间的性能通常存在差距。

基于以上考虑,本文旨在通过预训练的 DNN 来学习更有效的透明模型来弥补这一差距。具体来说,我们使用预训练的大型神经语言模型 (LLM) 来提取不同特征交互的嵌入(例如文本中的 ngram),然后在这些嵌入之上学习一个广义的加法模型。最终的学习模型(本文称为 Emb-GAM)是其输入特征和特征交互的透明线性函数。这里使用 LLM 可以大大减少模型需要学习的线性系数的数量,正因如此,Emb-GAM 不需要学习所有可能的特征交互的线性模型(它随着交互的阶数和特征维度呈指数增长),而是只需要学习一组固定的线性系数(LLM 提取的嵌入的大小)。因此,Emb-GAM 可以有效地模拟高阶交互,很好地泛化到新的交互(例如文本中看不见的 ngram),甚至可以改变测试时用于预测的特征数量。

模型具体介绍

 Emb-GAM 由四个步骤组成,如下图所示:

Ngram提取 首先,用户指定一个从输入文本序列中提取一组 ngram 特征的过程,其中提取的 Ngram 在语义上必须是有意义。为此,这里采用词级spaCy标记器从文本中提取有意义的符号,其中要使用的交互顺序(即 ngram 的长度)可以预先指定或通过交叉验证选择。 但是需要注意,包含的交互越长,结果模型的可解释性就越差。 领域知识可用于改进 ngram 提取过程:例如,可以删除非常常见的“停用词”作为特征,或者可以使用特定于语言的解析树来提取关键 ngram。

Embedding提取 在该过程中,每个输入(即ngram)通过模型获取固定大小的嵌入。如果Trannsformer返回一个可变长度的嵌入(例如,嵌入是序列长度的大小),我们在其可变长度维度上进行平均。为了使 Emb-GAM 运行良好,重要的是预训练任务(例如下一个词预测)包含有关在下游任务(例如情感分类)中使用的交互的有用信息。

Embedding求和 对输入中的每个ngram的嵌入进行求和,得到一个固定大小的向量,确保最终模型的可加性。虽然只是进行了一个简单求和,但它可以通过权重进行调整(例如,对不同阶的ngrams进行不同的加权)。

拟合最终的线性模型进行预测 最后,通过训练一个线性模型对嵌入向量求和进行预测。

计算复杂度 整个Emb-GAM流程的拟合计算成本相当低,因为(i)预训练的语言模型只用于推理,(ii)它只需要将线性模型拟合到相对较少的特征。经过训练后,模型可以转换为每个Ngram的线性系数字典,使推理非常快。进行预测只需要查找样本中每个ngram的标量系数,其系数是ngram的嵌入和学习到的线性权重w之间的点积。

实验快照

 在NLP中多种分类数据集上的实验表明,Emb-GAM方法比透明基线方法具有更好的泛化精度。此外,学习到的Emb-GAM模型很容易解释,无论是对个人预测还是在整个数据集级别,都可以在高风险使用场景中应用。

下图展示了不同模型在不同数据集上的泛化精度。与基线相比,Emb-GAM模型表现良好,在四个数据集中的三个数据集上实现了相当大的精度提高。值得注意的是,Emb-GAM模型的性能倾向于随着高阶ngram的添加而提高,而基线方法则不会。

下表说明了,通过交叉验证(再次使用经过调整的BERT模型来提取Emb-GAM的嵌入)来选择ngrams的顺序时显示了最佳结果。EmbGAM在三个数据集(Financial phrasebank, Rotten tomatoes和SST2)上显示了相当大的进步。

 下图显示了使用 4-gram 拟合的 Emb-GAM 模型(使用微调的 BERT)的准确性。因为仅用于测试的 ngram 的顺序是不同的, 随着用于测试的特征数量的增加,性能趋于提高,但解释变得更加困难。

推荐阅读

[1] 必看!!【AINLPer】自然语言处理(NLP)领域知识&&资料大分享

[2]【历年NeurIPS论文下载】一文带你看懂NeurIPS国际顶会(内含NeurIPS2022)

[3]【NLP论文分享&&语言表示】有望颠覆Transformer的图循环神经网络(GNN)

[4]【NeurIPS && 图谱问答】知识图谱(KG) Mutil-Hop推理的锥形嵌入方法(中科院–含源码)

[5]【NLP论文分享 && QA问答】动态关联GNN建立直接关联,优化multi-hop推理(含源码)

[6]【历年IJCAI论文下载 && 论文速递】无数据对抗蒸馏、垂直联合、预训练微调范式图神经网络(GNN)

[7]【NLP论文分享 && 含源码】基于Prompting Seq2Seq的自动标签序列生成(清华AI研究院)

[8]【NLP论文分享&&PLM源码】预训练模型BERT玩转Twitter(70亿数据对、100多种语言)

[9]【论文速递 && IJCAI论文干货下载】图神经网络(GNN)(多行为推荐、多模态食谱表示学习、同质图表示学习)

[10]【历年IJCAI论文下载 && 论文速递】无数据对抗蒸馏、垂直联合、预训练微调范式图神经网络(GNN)

[11]【NLP论文分享&&中文命名实体识别】如何构建一个优秀的Gazetteer/地名词典(浙大&含源码)

[12]一文看懂线性回归【比较详细】(内含源码)

[13]一文看懂逻辑回归【比较详细】(含源码)

论文&&源码

Paper:https://arxiv.org/pdf/2209.11799v1.pdf
Code:https://github.com/csinva/emb-gam

最后不是最后

关注 AINLPer 微信公众号(每日都有最新的论文推荐给你!!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值