nlp
文章平均质量分 81
一条赖皮狗
这个作者很懒,什么都没留下…
展开
-
word2vec之Negative Sampling理解
word2vec之Negative Sampling理解 本文章将介绍基于Negative Sampling的CBOW和Skip-Gram模型。与Hierarchical Softmax相比,Negative Sampling不需要构建复杂的Huffman树,以及进行多次二分类,而是利用简单的随机负采样,能大幅度提高性能。因而可以说Negative Sampling是Hierarchica原创 2018-02-01 17:55:49 · 1568 阅读 · 0 评论 -
基于HMM和规则相结合的中文地名识别方法
基于机器学习和规则相结合的中文地名识别方法 命名实体识别是自然语言处理中的一个常见任务,方法也越趋于成熟。本人最近正在做事件抽取相关工作,对于事件中地址元素的识别稍有经验,所以写下本文,以对前面工作做一个总结。1、词库的整理 中国地名毕竟有限,所以我们选择爬取中国统计局2016年统计用区划代码和城乡划分代码中的地名作为基本地名词库,补充到分词器中。分词器选择Hanlp。原创 2018-02-02 11:49:46 · 2774 阅读 · 1 评论