Sharding-JDBC 系列专题 - 第五篇:分布式事务
本系列专题旨在帮助开发者全面掌握 Sharding-JDBC,一个轻量级的分布式数据库中间件。本篇作为系列的第五篇文章,将深入探讨 分布式事务(Distributed Transactions),包括其概念、支持的事务类型、配置方法、工作原理以及实战案例。分布式事务是保障跨分片数据库数据一致性的关键功能,适合需要强一致性或最终一致性的分布式场景。需要图形化展示的部分将使用 Mermaid 语法绘制图表。
1. 分布式事务概述
在分库分表场景中,单一事务可能涉及多个分片数据库(如 ds_0
和 ds_1
)。传统数据库事务无法保证跨库操作的 原子性、一致性、隔离性和持久性(ACID),因此需要分布式事务。Sharding-JDBC 提供多种分布式事务机制,满足不同一致性需求。
1.1 核心特点
- 多事务类型:支持 XA 事务(强一致性)和 BASE 事务(最终一致性)。
- 透明集成:与分库分表、读写分离无缝结合,业务代码改动最小。
- 高性能:优化事务管理,减少分布式事务的性能开销。
- 灵活配置:支持多种事务管理器,适配不同场景。
1.2 事务类型
Sharding-JDBC 支持以下分布式事务类型:
- XA 事务:
- 基于两阶段提交(2PC)协议,保证强一致性。
- 适用于对数据一致性要求高的场景,如金融系统。
- 依赖 XA 兼容的数据库(如 MySQL、PostgreSQL)和事务管理器(如 Atomikos、Narayana)。
- BASE 事务:
- 基于柔性事务(最终一致性),通过 Saga 或 TCC 模式实现。
- 适用于高性能、允许短暂不一致的场景,如电商订单处理。
- 本地事务:
- 每个分片数据库独立提交事务,不保证跨库一致性。
- 适合一致性要求低的场景。
1.3 适用场景
- 跨库操作:如订单创建涉及用户表(
ds_0
)和订单表(ds_1
)。 - 金融场景:如转账操作需要强一致性。
- 电商系统:如订单和库存更新允许短暂不一致。
- 高并发场景:需要平衡一致性和性能。
2. 分布式事务工作原理
Sharding-JDBC 的分布式事务通过事务管理器协调多个分片数据库的操作,确保数据一致性。以下是不同事务类型的工作原理:
2.1 XA 事务(两阶段提交)
- 准备阶段:事务管理器通知每个分片数据库准备提交事务。
- 提交阶段:如果所有分片都准备成功,则提交事务;否则回滚。
2.2 BASE 事务(Saga 模式)
- 执行本地事务:将全局事务拆分为多个本地事务,依次执行。
- 补偿机制:如果某个本地事务失败,执行补偿操作(如回滚或重试)。
- 最终一致性:通过异步协调,最终达到一致状态。
2.3 流程图
以下是 XA 事务的执行流程,使用 Mermaid 绘制: