数据结构
数据结构是计算机存储、组织数据的方式。 数据结构是指相互之间存在一种或多种特定关系的数据元素的集合。通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。数据结构往往同高效的检索算法和索引技术有关。
数据的逻辑结构:
指反映数据元素之间的逻辑关系的数据结构,其中的逻辑关系是指数据元素之间的前后件关系,而与他们在计算机中的存储位置无关。逻辑结构包括:
1.集合
数据结构中的元素之间除了“同属一个集合” 的相互关系外,别无其他关系;
2.线性结构
数据结构中的元素存在一对一的相互关系;
3.树形结构
数据结构中的元素存在一对多的相互关系;
4.图形结构
数据结构中的元素存在多对多的相互关系。
数组
在程序设计中,为了处理方便, 把具有相同类型的若干变量按有序的形式组织起来。
这些按序排列的同类数据元素的集合称为数组。
栈(后进先出)
是只能在某一端插入和删除的特殊线性表。
它按照先进后出的原则存储数据,先进入的数据被压入栈底,最后的数据在栈顶,需要读数据的时候从栈顶开始弹出数据(最后一个数据被第一个读出来)。
访问、插入和删除元素只能在栈顶进行。
队列(先进先出)
一种特殊的线性表,它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作。进行插入操作的端称为队尾,进行删除操作的端称为队头。
队列是按照“先进先出”或“后进后出”的原则组织数据的。队列中没有元素时,称为空队列。
元素只能从队列尾插入,从队列头访问和删除。
链表
是一种物理存储单元上非连续、非顺序的存储结构,它既可以表示线性结构,也可以用于表示非线性结构,
数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表由一系列结点(链表中每一个元素称为结点)组成,结点可以在运行时动态生成。每个结点包括两个部分:一个是存储数据元素的数据域,另一个是存储下一个结点地址的指针域。
链表就像一个节点链,其中每个节点包含着数据和指向后续节点的指针。 链表还包含一个头指针,它指向链表的第一个元素,但当列表为空时,它指向null或无具体内容。
树
树型结构是一类非常重要的非线性数据结构,其中以树和二叉树最为常用。
树 是由n(n>=1)个有限节点组成一个具有层次关系的集合。它具有以下特点:每个节点有零个或多个子节点;没有父节点的节点称为 根 节点;每一个非根节点有且只有一个 父节点 **;除了根节点外,每个子节点可以分为多个不相交的子树。
二叉树
二叉树是每个结点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree),二叉树的子树有左右之分,次序不能颠倒。二叉树常被用于实现二叉查找树和二叉堆。
树和二叉树的主要差别:
- 树中结点的最大度数没有限制,而二叉树结点的最大度数为2;
- 树的结点无左、右之分,而二叉树的结点有左、右之分。
二叉查找树(二叉排序树、二叉搜索树)
(1)若左子树不空,则左子树上所有结点的值均小于它的根结点的值;
(2)若右子树不空,则右子树上所有结点的值均大于或等于它的根结点的值;
(3)左、右子树也分别为二叉排序树;
平衡二叉树(AVL树)
是一棵二叉排序树,且具有以下性质:它是一棵空树或它的左右两个子树的高度(深度)之差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。
红黑树:
红黑树是平衡二叉树的一种……
图
图是由结点的有穷集合V和边的集合E组成。其中,为了与树形结构加以区别,在图结构中常常将结点称为顶点,边是顶点的有序偶对,若两个顶点之间存在一条边,就表示这两个顶点具有相邻关系。.
图是一种较线性表和树更为复杂的数据结构,在线性表中,数据元素之间仅有线性关系,在树形结构中,数据元素之间有着明显的层次关系,而在图形结构中,节点之间的关系可以是任意的,图中任意两个数据元素之间都可能相关。
堆
堆是在程序运行时,而不是在程序编译时,申请某个大小的内存空间。即动态分配内存,对其访问和对一般内存的访问没有区别。
在计算机科学中,堆是一种特殊的树形数据结构,每个结点都有一个值。通常我们所说的堆的数据结构,是指二叉堆。堆的特点是根结点的值最小(或最大),且根结点的两个子树也是一个堆。