Machine Learning Yearning - Ng 笔记

持续更新
已更新21章
第12章、第19章为阶段性总结章节

第一章:为什么选择机器学习策略

如果你的团队要使用神经网络做一个猫图片识别系统。
如果你能够在以上可能的方向中做出正确的选择,那么你将建立起一个领先的猫咪图片识别平台,并带领你的公司获得成功。但如果你选择了一个糟糕的方向,则可能因此浪费掉几个月甚至数年的开发时间。

第二章:如何使用本书帮助你的团队

完成本书的阅读后,你将对于“如何在机器学习项目中设定一个技术方向”有着深层次的了解。优先级的稍加改变会对团队的生产力产生巨大的影响。

第三章:先修知识与符号标记

简要介绍了监督学习。

第四章:规模驱动机器学习发展

有两个主要因素推动着近期机器学习的发展:
数据可用性(data availability):海量数据对于学习算法是很有用的。
计算规模(computational scale):在近些年前,我们才开始能够使用现有的海量数据集来训练规模足够大的神经网络。

在算法训练时,许多其它的细节也同等重要,例如神经网络的架构。但目前来说,提升算法性能的更加可靠的方法仍然是训练更大的网络以及获取更多的数据。

第五章:开发集和测试集的概念

在大数据时代来临前,机器学习中的普遍做法是使用 70% / 30% 的比例来随机划分出训练集和测试集。这种做法的确可行,但在越来越多的实际应用中,训练数据集的分布与人们最终所关心的分布情况往往不同,此时执意要采取这样的划分则是一个坏主意。(例如猫图片识别系统中,训练集都是网络上找到的清晰图片,而测试集是用户上传的手机拍摄的模糊图片。因此训练好的系统却不能识别用户上传的图片。)
我们通常认为:
训练集(training set)用于运行你的学习算法。
开发集(development set)用于调整参数,选择特征,以及对学习算法作出其它决定。有时也称为留出交叉验证集(hold-out cross validation set)。
测试集(test set)用于评估算法的性能,但不会据此决定使用什么学习算法或参数。
所以对于上边提到的情况你应当这样处理:
合理地设置开发集和测试集,使之近似模拟可能的实际数据情况,并处理得到一个好的结果。也就是说你的测试集不应该仅是简单地将可用的数据划分出 30%,尤其是将来获取的数据(移动端图片)在性质上可能会与训练集(网站图片)不同时。<

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Table of Contents 1 Why Machine Learning Strategy 2 How to use this book to help your team 3 Prerequisites and Notation 4 Scale drives machine learning progress 5 Your development and test sets 6 Your dev and test sets should come from the same distribution 7 How large do the dev/test sets need to be? 8 Establish a single-number evaluation metric for your team to optimize 9 Optimizing and satisficing metrics 10 Having a dev set and metric speeds up iterations 11 When to change dev/test sets and metrics 12 Takeaways: Setting up development and test sets 13 Build your first system quickly, then iterate 14 Error analysis: Look at dev set examples to evaluate ideas 15 Evaluating multiple ideas in parallel during error analysis 16 Cleaning up mislabeled dev and test set examples 17 If you have a large dev set, split it into two subsets, only one of which you look at 18 How big should the Eyeball and Blackbox dev sets be? 19 Takeaways: Basic error analysis 20 Bias and Variance: The two big sources of error 21 Examples of Bias and Variance 22 Comparing to the optimal error rate 23 Addressing Bias and Variance 24 Bias vs. Variance tradeoff 25 Techniques for reducing avoidable bias Page 3 Machine Learning Yearning-Draft Andrew Ng26 Error analysis on the training set 27 Techniques for reducing variance 28 Diagnosing bias and variance: Learning curves 29 Plotting training error 30 Interpreting learning curves: High bias 31 Interpreting learning curves: Other cases 32 Plotting learning curves 33 Why we compare to human-level performance 34 How to define human-level performance 35 Surpassing human-level performance 36 When you should train and test on different distributions 37 How to decide whether to use all your data 38 How to decide whether to include inconsistent data 39 Weighting data 40 Generalizing from the training set to the dev set 41 Addressing Bias and Variance 42 Addressing data mismatch 43 Artificial data synthesis 44 The Optimization Verification test 45 General form of Optimization Verification test 46 Reinforcement learning example 47 The rise of end-to-end learning 48 More end-to-end learning examples 49 Pros and cons of end-to-end learning 50 Learned sub-components 51 Directly learning rich outputs Page 4 Machine Learning Yearning-Draft Andrew Ng52 Error Analysis by Parts 53 Beyond supervised learning: What’s next? 54 Building a superhero team - Get your teammates to read this 55 Big picture 56 Credits

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值