数据治理之论读书笔记

本文探讨了数据治理的关键点,包括数据危机的背景、价值释放的目标、规则秩序的构建、安全底线的重要性以及学科交叉的研究视角。数据治理旨在解决数据流通、质量和安全问题,释放数据价值,建立涵盖国家、行业、组织的规则秩序,并确保数据安全。同时,它强调多学科研究,推动信息化发展,明确数据资源、资产和资本的特性。文章回顾了数据治理的历史观点,分析了当前阶段的发展现状,指出数据管理与治理的区别,并提出了数据治理体系的框架和多层次实践策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据治理之论

数据治理可以用五个关键词来描述:数据危机、价值释放、规则秩序、安全底线、学科交叉

一、数据危机:数据治理理论的出发点

数据危机:这是我们对大数据技术发展和应用现状的基本认识,也是数据治理理论研究的出发点。目前数据流通、数据质量、数据安全等方面问题频现,从表象上来看,与法律政策、制度机制、技术体系、人才队伍滞后相关,但从根源上来看,是由于人们对数据这一新型生产要素的本质属性、存在形态、潜在价值、利用方式等的认识还不到位,尚未建立科学系统的数据治理规则秩序,无法支撑数据资源有序且高效的开发利用,从而导致数据资源的利用能力远远跟不上整个社会对数据价值的期待,形成数据危机。

二、价值释放:数据治理的根本目标

价值释放:这是数据治理的根本目标。当前,数据的价值仅仅显露冰山一角。数据利用情况的好坏、价值释放的大小已成为一个国家、地区、组织综合竞争力的关键指标。为“用数据说话、用数据决策、用数据管理、用数据创新”奠定良好基础。

三、规则秩序:数据治理的核心内容

规则秩序:这是数据治理的核心内容。数据作为一种新型生产要素,具有区别于传统生产要素的典型特征,传统管理模式无法直接适用。数据治理探索的核心内容就是要构建适用于这一新型生产要素的一整套系统性的规则秩序,建立并完善推动规则秩序执行的方法和手段。这些规则秩序需要体系化,覆盖国家、行业、组织等三个层次,包括确立数据的资产地位、界定数据管理的体制机制、促进数据共享开放、保护数据安全与隐私等四方面内容,以及执行和落实中所需要的制度法规、标准规范、应用实践、支撑技术等方法和手段。

四、安全底线:数据治理的底线要求

安全底线:确保数据安全和保护个人隐私是数据治理的底线要求。围绕数据流通的全生命周期,从制度、技术、标准等方面建立和完善数据安全管理体系,是数据治理的重要内容之一。

五、学科交叉:数据治理研究的站位和视角

学科交叉:这是我们做数据治理研究的站位和视角。数据治理不仅仅是技术工作,而是需要从法律、经济、管理、技术等多方面考虑。因此,研究数据治理,应坚持多学科视角,综合法学、经济学、管理学、数据科学、信息资源管理科学等多学科观点,兼容并蓄、形成合力,全方位解读与分析,系统地开展数据治理的理论研究。

六、信息化

信息化发展以数字化、网络化和智能化为主线。

在信息化发展历程中,

数字化奠定基础,实现数据资源的获取和积累;

网络化构建平台,促进数据资源的流通和汇聚;

智能化展现能力,通过多源数据的融合分析呈现信息应用的类人智能,帮助人类更好地认知复杂事物和解决问题。

可以说,不断汇聚的数据、不断更新迭代的网络平台以及不断优化智能的逻辑算法推动了信息化的不断升级发展。

通信网络和数据采集设备的广泛普及应用使数据井喷式增长

数据处理技术的不断革新使数据增值成为可能

云计算、大数据、人工智能、区块链等技术蓬勃发展,各种新理念、新应用、新需求不断涌现,为数据价值的释放提供了更多可能。

七、数据资源、数据资产、数据资本

数据作为一种新型生产要素,具有独特的自然属性和社会属性。

数据资源是一种重要生产要素,在不同阶段、不同场景中,数据将具备资源、资产、资本的不同属性。

根据百度百科,资源是指自然界和人类社会中可以用以创造物质财富和精神财富的具有一定量的积累的客观存在形态,如土地资源、矿产资源、森林资源、海洋资源、石油资源、人力资源、信息资源等。

对比资源的定义,我们可以看出,数据是一种重要的资源,具有明确的来源(包括人、社会组织、企业以及各类动物、非生命体等),可以被有效地采集获取(例如,政府基于履职需求,采集人们的个人信息、行为信息),是一种可被量化的客观存在。

资产具有现实性、可控性和经济性三个基本特征。现实性是指资产必须是现实已经存在的,还未发生的事物不能称为资产;可控性是指对企业的资产要有所有权或控制权;经济性是指资产预期能给企业带来经济效益,且资产的成本或者价值能够被可靠地计量。

舍恩伯格在他的新书《数据资本时代》中指出,在海量数据市场上,数据的价值将全面赶超货币,数据将是未来市场的基础。数据资本化的过程,就是将数据资产的价值和使用价值折算成股份或出资比例,通过数据交易和数据流动变为资本的过程。

数据资源、资产、资本的概念问题在理论上尚处于不断探索完善的阶段。

在这里插入图片描述

传统的流程化价值链示意图

在这里插入图片描述

数字时代的同心圆价值链示意图

数字时代需要更加高效、敏捷、扁平化的价值链条,打通数据烟囱,消除数据孤岛,重塑组织架构。同心圆价值链具有以下特点:

1、共同愿景和目标是核心驱动力。

2、数据是组织运行的重要生产要素。

3、监督和评价是贯穿整个组织各项活动、全生命周期的必要制度。

以数据资源的“聚、通、用”为目标,倒逼政府各部门打破行政壁垒,由过去的碎片化、项目式发展方式向集约化、效能型发展模式转变。

数字经济可分为三个层次:提供核心动能的信息技术及其装备产业、深度信息化的各行各业以及跨行业数据融合应用的数据增值产业。

八、数据治理理论与实践现状

1、数据治理的阶段发展

大约2012年到2013年间,在大数据领域最具影响力的技术和产品(NoSQL 等新型数据库系统和批处理、流处理、图处理等计算模型)主要围绕数据清洗、汇聚、存储、处理等基础设施展开。

到2014年至2015年前后,随着基础设施技术和产品的发展,已经形成了一批针对特定应用场景的解决方案,而且数据驱动的人工智能方法取得了突破性的进展,人们分析数据、从数据中萃取知识和智能的热情高涨,数据分析方法、产品和相关企业成为这一阶段大数据生态系统中最为活跃的部分。

到2016年,虽然大数据技术还远未成熟,但是体系已经渐趋完整,与传统产业、行业的结合也日益紧密,在市场营销、人力资源管理、客户服务、广告优化、金融服务等传统领域的应用初见成效,面向行业和领域的应用型企业发展迅猛,大数据生态系统的发展更加成熟。

2017年之后,随着大数据应用的不断深入,数据作为战略资源的地位日益凸显,数据共享与开放、安全与隐私保护、数据确权等问题引发了人们的深度思考。大数据治理的概念逐渐受到人们的关注,大数据治理与数据安全成为大数据产业生态系统的新焦点。

2、治理的历史观点

“治理”在中国的历史源远流长。最早出现在春秋战国时期,诸子百家将其用来抒发治国、理政、平天下的抱负。

儒家学说强调治理要“仁政”“德礼教化”,其中《孟子》有述“君施教以治理之”,《荀子·君道》提出“明分职,序事业,材技官能,莫不治理,则公道达而私门塞矣,公义明而私事息矣”。

道家提倡以“无为而治”“道法自然”作为治理的准则。《老子注·五章》指出,“天地任自然,无为无造,万物自相治理”才是最好的治理状态。

法家的治理则推崇法律化的路径,宣扬“以法治国”“废私立公”。《韩非子》提出:“其法通乎人情,关乎治理也。”“夫治法之至明者,任数不任人。是以有术之国,不用誉则毋适,境内必治,任数也。”论证了通过“法”与“术”、刑赏分明而治,达到政理之“势”的必要性。

3、治理的现代探索

现代意义上的“治理”一词源于西方,其英文是governance。

在郁建兴和任泽涛的文章中,治理是一个采取联合行动的过程,强调协调而不是控制。

[插图]治理与管理的不同点在于,治理是多主体的行为,管理是单一主体的行为;治理的本意是服务,即通过服务来达到管理的目的;治理是决定由谁来进行决策,管理则是制定和执行这些决策。

2013年11月,党的十八届三中全会提出:“全面深化改革的总目标是完善和发展中国特色社会主义制度,推进国家治理体系和治理能力现代化。”这是“治理”思想首次进入国家高层文件。

“国家治理体系”是“治理能力现代化”的前提和基础,“治理能力现代化”是“国家治理体系”的目的和结果,要想实现真正的治理能力现代化,首要任务是建立健全一套完整、合法、有效的“国家治理体系”。

4、数据管理与数据治理

数据管理(data management)的概念是伴随20世纪80年代数据随机存储技术和数据库技术的使用,计算机系统中的数据可以方便地存储和访问而提出的。数据管理是指通过规划、控制与提供数据和信息资产职能,包括开发、执行和监督有关数据的计划、政策、方案、项目、流程、方法和程序,来获取、控制、保护、交付和提升数据与信息资产价值。

数据管理强调单一主体,对本单位掌握的数据采取的一系列活动的目的在于保障本单位数据有序、高效管理和运转。

在这里插入图片描述

数据治理与数据管理的区别

在这里插入图片描述

数据治理参与者及流程示意图

数据治理的核心在于“治理”,目的是为了保障数据有序运转,于是可以对数据治理做出这样一个界定:数据治理以“数据”为对象,是指在确保数据安全的前提下,建立健全规则体系,理顺各方参与者在数据流通的各个环节的权责关系,形成多方参与者良性互动、共建共享共治的数据流通模式,从而最大限度地释放数据价值,推动国家治理能力和治理体系现代化。

九、数据治理的基本思路

2016年G20杭州峰会发布的《二十国集团数字经济发展与合作倡议》指出,数字经济是指以使用数字化的知识和信息作为关键生产要素、以现代信息网络作为重要载体、以信息通信技术(ICT)的有效使用作为效率提升和经济结构优化的重要推动力的一系列经济活动。

在这里插入图片描述

数据流通示意图

数据治理是虚拟的数字世界与现实矛盾的和谐统一的基本前提。

从来源上看,虚拟是从现实中发展而来的,数字世界的构建源于物理世界的数字化转型。数据治理的一大作用就是保证数字世界与物理世界的统一性。

数字世界本身不同于物理世界,其源于并从属于物理世界。

虚拟现实融合化:

数据治理的本质是实现虚拟与现实的交互和融合,实现虚拟现实融合化(如数字孪生,数字孪生的本质是在比特的汪洋中重构原子的运行轨道,以数据的流动实现物理世界的资源优化。)

数据资源资产化:

将认识和实现数据资源价值的过程称为“数据资源资产化”。数据只有流转起来才能产生真正的价值,而数据流转也需要有相应的趋动力,数据资产化则是实现数据流通的重要驱动力。

数据运营专业化:

数据资源作为重要的国家战略资源,对外负有保障国家安全的职责,对内负有维护个人和企业等主体公共权益的责任,有必要将涉及国计民生的公共数据资源作为类似矿产等自然资源进行授权经营,设置专门的数据资源运营机构。

数据流通全球化:

数据经济是全球化的,其快速发展需要实现全球化的数据流通。国家应在数字经济发展重点区域,如上海自贸区、粤港澳大湾区等,设置数据流通特区,开展数据跨境流通试点示范。

数据治理体系化:

坚持底线思维:国家安全底线、产业发展底线、个人权益底线

十、数据治理的体系框架

  • 按照国家、行业和组织三个层次来组织数据治理的框架是合理的。

  • 数据治理的内容十分丰富,可以适度归纳成几个类别

  • 数据治理需要多种工具手段才能落地

在这里插入图片描述

多层次、多维度的数据治理体系框架结构图

在这里插入图片描述

数据治理体系的三个层次及相互关系

数据治理的核心目标就是通过各种手段提升数据的价值,而其核心就是确定数据的资产地位。

为了提升数据的价值,需要系统地设计管理体制机制,包括数据治理组织和数据管理活动;需要最大限度地推动数据开放共享,没有数据的开放共享就没有数字经济的发展。当然,这一切需要有数据安全和隐私保护的底线保障,否则,数据的价值也无法体现。

在这里插入图片描述

数据治理的核心目标

一、国家层次的数据治理与实践

在国家层次,通过制定“上位法”,明确数据的权属和合理使用数据的边界;推动数据资产立法等

通过成立国家标准化管理委员会等多级机构,领导数据治理相关的标准工作;

在司法领域和政府数据开放两个方面,也有不少应用实践的案例;

最后,通过科技部、国家自然科学基金委员会等部门,组织与数据治理相关的科研项目,引导数据治理支撑技术的研究。

二、行业层次的数据治理与实践

在行业层次,主要通过行业自治的模式,在自愿的原则上形成行业协会或联盟等,以作为政府和企业间的桥梁,在国家法规和政策的指导下,制订行业数据治理规范,研制数据治理的国家标准和行业标准,总结并推广数据治理的实践经验,并且通过全国性学术组织引领相关的支撑技术研究。

制度法规方面,建立政府数据治理规范、科学数据治理规范、金融行业数据治理规范等。

标准规范方面建立数据治理标准体系、安全与隐私保护标准等。

在这里插入图片描述

大数据治理标准体系框架

实践方面,进行国家标准宣贯以及培训、以白皮书、案例库等形式总结经验。

技术方面,通过全国性的学术组织,引领支撑技术研发;建设数据交易中心。

三、组织层次的数据治理与实践

组织层次的数据治理工作应该接受国家和行业联盟的监督和指导,积极参与相关的标准和规范建设,主动按照国家标准或行业标准来规范和改进自身数据治理过程,尽力保护其用户个体的数据安全和隐私,通过适度的共享开放来盘活数据的价值并使用各项技术来实现自身的数据治理系统。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

碳学长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值