畅通工程再续
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 27398 Accepted Submission(s): 8885
Problem Description
相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现。现在政府决定大力发展百岛湖,发展首先要解决的问题当然是交通问题,政府决定实现百岛湖的全畅通!经过考察小组RPRush对百岛湖的情况充分了解后,决定在符合条件的小岛间建上桥,所谓符合条件,就是2个小岛之间的距离不能小于10米,也不能大于1000米。当然,为了节省资金,只要求实现任意2个小岛之间有路通即可。其中桥的价格为 100元/米。
Input
输入包括多组数据。输入首先包括一个整数T(T <= 200),代表有T组数据。
每组数据首先是一个整数C(C <= 100),代表小岛的个数,接下来是C组坐标,代表每个小岛的坐标,这些坐标都是 0 <= x, y <= 1000的整数。
每组数据首先是一个整数C(C <= 100),代表小岛的个数,接下来是C组坐标,代表每个小岛的坐标,这些坐标都是 0 <= x, y <= 1000的整数。
Output
每组输入数据输出一行,代表建桥的最小花费,结果保留一位小数。如果无法实现工程以达到全部畅通,输出”oh!”.
Sample Input
2 2 10 10 20 20 3 1 1 2 2 1000 1000
Sample Output
1414.2 oh!
Author
8600
Source
畅通工程有一系列的题 MST或最短路的 可以当练手
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<stdlib.h>
#include<vector>
#include<queue>
using namespace std;
vector<int>map[105];
struct In{
int u,v;
double w;
}edg[5005];
int k,c,p[105];//顶点c 边c*(c-1)/2
int cmp(const void*a,const void*b)//
{
return (*(In*)a).w>(*(In*)b).w?1:-1;
}
int find(int x)
{
return p[x]==x?x:(p[x]=find(p[x]));
}
void kruskal()
{
int sum=0;
double sw=0;
for(int i=1;i<=c;i++)
p[i]=i;
for(int i=0;i<k;i++)
{
if(find(edg[i].u)!=find(edg[i].v))
{
//if(edg[i].w>1000)continue;//不会小于10只可能多条相加大于1000
sw+=sqrt(edg[i].w);
sum++;
int tx=find(edg[i].u),ty=find(edg[i].v);
p[tx]=ty;
}
if(sum>=c-1) break;
}
if(sum>=c-1) printf("%.1lf\n",100.0*sw);
else printf("oh!\n");
}
int main()
{
int t,x,y;
scanf("%d",&t);
while(t--&&scanf("%d",&c))
{
k=0;
memset(map,0,sizeof(map));//初始化可以防止很多问题 即使有些不必要
memset(edg,0,sizeof(edg));//
for(int i=0;i<c;i++)
{
scanf("%d%d",&x,&y);
map[i].push_back(x);
map[i].push_back(y);
}
for(int i=0;i<c-1;i++)
{
for(int j=i+1;j<c;j++)
{
double p=(pow(map[i][0]-map[j][0],2.0)
+pow(map[i][1]-map[j][1],2.0));//预防开根号排序出错
if(p>1000000 || p<100) continue;
edg[k].w=p;
edg[k].u=i;
edg[k].v=j;
k++;
}
}
qsort(edg,k,sizeof(edg[0]),cmp);
kruskal();
}
return 0;
}