数塔 ( 动态规划)

数塔

Time Limit : 1000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 7   Accepted Submission(s) : 3
Problem Description
在讲述DP算法的时候,一个经典的例子就是数塔问题,它是这样描述的: 有如下所示的数塔,要求从顶层走到底层,若每一步只能走到相邻的结点,则经过的结点的数字之和最大是多少? [img]../data/images/2084-1.jpg[/img] 已经告诉你了,这是个DP的题目,你能AC吗?
 

Input
输入数据首先包括一个整数C,表示测试实例的个数,每个测试实例的第一行是一个整数N(1 <= N <= 100),表示数塔的高度,接下来用N行数字表示数塔,其中第i行有个i个整数,且所有的整数均在区间[0,99]内。
 

Output
对于每个测试实例,输出可能得到的最大和,每个实例的输出占一行。
 

Sample Input
  
  
1 5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5
 

Sample Output
  
  
30
 

简单的动态规划。
代码如下:

#include <iostream>
#include <cstdio>
#include <vector>
using namespace std;
int n ;
vector<int>ta[110];
int dis[110][110];
int main()
{
    int c , x;
    scanf("%d",&c);
    while(c --)
    {
        scanf("%d",&n);
        for(int i = 0; i < n; i ++)
        {
            ta[i].clear();
        }
        for(int i = 0; i < n; i ++)
        {
            for(int j = 0; j <= i; j ++)
            {
                scanf("%d",&x);
                ta[i].push_back(x);
            }
        }
        for(int i = 0; i < n; i ++)
        {
            dis[n-1][i] = ta[n-1][i];
        }
        for(int i = n-2; i >= 0; i --)
        {
            for(int j = 0; j <= i; j ++)
            {
                if(dis[i+1][j] < dis[i+1][j+1])
                    dis[i][j] = ta[i][j] + dis[i+1][j+1];
                else
                    dis[i][j] = ta[i][j] + dis[i+1][j];
            }
        }
        printf("%d\n",dis[0][0]);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值