数塔
Time Limit : 1000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 7 Accepted Submission(s) : 3
Problem Description
在讲述DP算法的时候,一个经典的例子就是数塔问题,它是这样描述的: 有如下所示的数塔,要求从顶层走到底层,若每一步只能走到相邻的结点,则经过的结点的数字之和最大是多少? [img]../data/images/2084-1.jpg[/img] 已经告诉你了,这是个DP的题目,你能AC吗?
Input
输入数据首先包括一个整数C,表示测试实例的个数,每个测试实例的第一行是一个整数N(1 <= N <= 100),表示数塔的高度,接下来用N行数字表示数塔,其中第i行有个i个整数,且所有的整数均在区间[0,99]内。
Output
对于每个测试实例,输出可能得到的最大和,每个实例的输出占一行。
Sample Input
1 5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5
Sample Output
30
简单的动态规划。
代码如下:
#include <iostream>
#include <cstdio>
#include <vector>
using namespace std;
int n ;
vector<int>ta[110];
int dis[110][110];
int main()
{
int c , x;
scanf("%d",&c);
while(c --)
{
scanf("%d",&n);
for(int i = 0; i < n; i ++)
{
ta[i].clear();
}
for(int i = 0; i < n; i ++)
{
for(int j = 0; j <= i; j ++)
{
scanf("%d",&x);
ta[i].push_back(x);
}
}
for(int i = 0; i < n; i ++)
{
dis[n-1][i] = ta[n-1][i];
}
for(int i = n-2; i >= 0; i --)
{
for(int j = 0; j <= i; j ++)
{
if(dis[i+1][j] < dis[i+1][j+1])
dis[i][j] = ta[i][j] + dis[i+1][j+1];
else
dis[i][j] = ta[i][j] + dis[i+1][j];
}
}
printf("%d\n",dis[0][0]);
}
return 0;
}