四阶IIR滤波器C语言代码实现

用matlab的filterDesigner设计一个四阶高通滤波器

% %
% % IIR butterworth滤波器系数% 高通(直接II型4阶、Fs = 20KHz、Fc = 1500Hz)PLC=0.0025PLC
% % 分子、分母系数(对累加和进行滤波)
b1 = [0.5365885311137,   -2.146354124455,    3.219531186682,   -2.146354124455, 0.5365885311137];
a1 = [1,   -2.773682317549,    3.019038699424,   -1.504765051425, 0.2879304294211];
% % 阶跃响应
% figure
% sys = tf(b1,a1);
% step(sys)

cur_flt1 = filter(b1,a1,cur_diffsum); % 滤波处理
vol_flt1 = filter(b1,a1,vol_diffsum); % 滤波处理
figure("Name", "IIR cur_4jie1500")
plot(cur_flt1,'*');
figure("Name", "IIR vol_4jie1500")
plot(vol_flt1,'*');

filter的实际就是对X数组做离散运算得到滤波后数组;

使用的离散序列为:

a(1)*y(n) = b(1)*x(n) + b(2)*x(n-1) + b(3)*x(n-2) + ... + b(nb+1)*x(n-nb)
                        - a(2)*y(n-1) - a(3)*y(n-2) - ... - a(na+1)*y(n-na)


%%%===================================%%%
x = cur_diffsum;
y(1)=b1(1)*x(1);
y(2)=b1(1)*x(2)+b1(2)*x(1)-a1(2)*y(1);
y(3)=b1(1)*x(3)+b1(2)*x(2)+b1(3)*x(1)-a1(2)*y(2)-a1(3)*y(1);
y(4)=b1(1)*x(4)+b1(2)*x(3)+b1(3)*x(2)+b1(4)*x(1)-a1(2)*y(3)-a1(3)*y(2)-a1(4)*y(1);
for i=5:len
    y(i) = b1(1)*x(i)+b1(2)*x(i-1)+b1(3)*x(i-2)+b1(4)*x(i-3)+b1(5)*x(i-4) - a1(2)*y(i-1)-a1(3)*y(i-2)-a1(4)*y(i-3)-a1(5)*y(i-4);
end
figname = figure("Name", "cur_fft_y(i)");
signal_fft(y, Fs, 256, 1, figname);
%%%===================================%%%

%%%+++++++++++++++++++++++++++++++++++%%%
SumY = 0;
SumX = 0;
FltX = [0,0,0,0,0];
FltY = [0,0,0,0,0];
for i=1:len
    FltX(5) = FltX(4);
    FltX(4) = FltX(3);
    FltX(3) = FltX(2);
    FltX(2) = FltX(1);
    FltX(1) = x(i);

    for p=1:5
        SumX = SumX + b1(p)*FltX(p);
    end
    for q=2:5
        SumY = SumY + a1(q)*FltY(q-1);
    end
    FltY(4) = FltY(3);
    FltY(3) = FltY(2);
    FltY(2) = FltY(1);

    FltY(1) = (SumX - SumY);
    Yn(i) = FltY(1);
    SumY = 0;
    SumX = 0;
end
figname = figure("Name", "cur_fft_Yn");
signal_fft(Yn, Fs, 256, 1, figname);

其C语言实现形式如下:

//% % IIR butterworth滤波器系数% 高通(直接II型4阶、Fs = 20KHz、Fc = 1500Hz)
//% % 分子、分母系数(对累加和进行滤波)
double b1[5] = { 0.5365885311137, -2.146354124455, 3.219531186682, -2.146354124455, 0.5365885311137 };
double a1[5] = { 1, -2.773682317549, 3.019038699424, -1.504765051425, 0.2879304294211 };

/**
* 功能:高通滤波
*      
* 参数:
*      Xn: 传入的 diffsum 值
* 返回值:
*      Yn: 滤波后的值
*/
double iir_filter_diffsum(double Xn)
{
	// 初始化滤波参数
	static double FltX[5] = { 0, 0, 0, 0, 0 };
	static double FltY[5] = { 0, 0, 0, 0, 0 };
	double SumX = 0, SumY = 0, Yn = 0;
	int i = 0;

    FltX[4] = FltX[3];
    FltX[3] = FltX[2];
    FltX[2] = FltX[1];
    FltX[1] = FltX[0];
    FltX[0] = Xn;

    for (i = 0; i < 5; i++)
    {
        SumX = SumX + b1[i] * FltX[i];
    }
    for (i = 1; i < 5; i++)
    {
        SumY = SumY + a1[i] * FltY[i - 1];
    }
    FltY[3] = FltY[2];
    FltY[2] = FltY[1];
    FltY[1] = FltY[0];
    FltY[0] = (SumX - SumY);
   
    Yn = FltY[0];

    return Yn;
}

滑动均值滤波:

/**
* 功能:滑动求平均
*
* 输入参数:
*      data: 传入的数据
*      d_size: data数据长度
*      w_size: 滑动窗口大小
* 输出参数:
*      result: 滤波后的值
*/
void moving_average(double *data, double* result, int d_size, int w_size)
{
	for (int i = 0; i < d_size - w_size + 1; i++)
	{
		double sum = 0;
		for (int j = 0; j < w_size;j++)
		{
			sum += data[i + j];
		}
		//result[i + (w_size - 1) / 2] = sum / w_size;
		result[i] = sum / w_size;
	}

	//将末尾的数据直接添加到平均值数组中
	for (int i = d_size - w_size + 1; i < d_size;i++)
	{
		result[i] = data[i];
	}
}

<think>好的,我现在需要帮助用户了解IIR滤波器的C语言实现。首先,我得回忆一下IIR滤波器的基本概念和原理。IIR是无限脉冲响应滤波器,和FIR不同,它使用递归结构,所以具有更高的效率,但可能存在稳定性问题。用户可能已经知道这些基础,但可能需要具体的实现步骤。 接下来,用户需要的是C语言实现方法。我需要考虑如何将差分方程转化为代码。通常,IIR滤波器的差分方程是y[n] = Σa_k*y[n-k] + Σb_m*x[n-m]。这里,系数a和b是关键,需要提前计算或设计好。 然后,我应该解释直接I型或直接II型结构。直接II型更节省内存,因为它减少了延迟单元的数量。可能需要在回答中提到结构的选择,比如使用二分段(Biquad)来避免高滤波器的不稳定性。 接下来,关于C语言的具体实现,需要定义状态变量数组来保存之前的输入和输出。比如,对于二IIR,可能需要两个过去输入和输出的值。然后,编写一个函数,每次处理一个样本,更新状态并计算输出。 还需要注意系数的存储方式,通常使用数组来保存a和b的系数。归一化的问题也要考虑,比如是否将a0归一化为1,这样在计算时可以节省一次乘法。 稳定性问题可能也需要提及,比如在设计滤波器时确保极点位于单位圆内,但在实现时可能还需要量化或缩放系数来防止溢出。 另外,用户可能关心如何测试这个滤波器,比如使用正弦波输入,观察输出是否符合预期,或者用跃响应测试。可能还要提到定点数和浮点数的选择,取决于处理器的能力。 最后,示例代码是关键,提供一个简单的二IIR滤波器实现,展示如何初始化状态,处理每个样本。同时,提醒用户注意系数设计和结构选择的重要性,以及可能的优化方法,如循环展开或使用移位代替除法。 检查是否有遗漏的部分,比如是否解释了差分方程到代码的转换,是否提到了递归计算和状态保存,以及如何处理实时采样数据。可能需要分步骤解释,先理论后代码,结构清晰。 确保语言通俗易懂,避免过多数学公式,但必要的公式用LaTeX标注。例如,传递函数和差分方程的表示需要正确使用$$格式。同时,注意用户可能对某些术语不熟悉,比如Biquad,需要简要解释。 总结起来,回答的结构应该是:介绍IIR滤波器特点,实现步骤(差分方程、结构选择、状态变量、代码示例),注意事项(稳定性、定点处理),示例代码,以及可能的测试方法。这样用户能逐步理解并实现自己的IIR滤波器。</think>IIR滤波器(无限冲激响应滤波器)的C语言实现可分为以下关键步骤,采用直接Ⅱ型结构(Biquad结构)实现效率最高: $$H(z) = \frac{\sum_{k=0}^{M}b_kz^{-k}}{1 - \sum_{k=1}^{N}a_kz^{-k}}$$ **一、实现步骤** 1. **差分方程转换** 对NIIR滤波器,采用二分段实现(Biquad): $$y[n] = b_0x[n] + b_1x[n-1] + b_2x[n-2] - a_1y[n-1] - a_2y[n-2]$$ 2. **状态变量定义** ```c typedef struct { float b0, b1, b2; // 分子系数 float a1, a2; // 分母系数(已假设a0=1) float x1, x2; // 输入延迟单元 float y1, y2; // 输出延迟单元 } Biquad; ``` 3. **单次滤波函数** ```c float biquad_process(Biquad *filter, float input) { // 计算当前输出 float output = filter->b0 * input + filter->b1 * filter->x1 + filter->b2 * filter->x2 - filter->a1 * filter->y1 - filter->a2 * filter->y2; // 更新状态变量 filter->x2 = filter->x1; filter->x1 = input; filter->y2 = filter->y1; filter->y1 = output; return output; } ``` **二、完整示例(二低通滤波器)** ```c #include <stdio.h> typedef struct { float b0, b1, b2; float a1, a2; float x1, x2; float y1, y2; } Biquad; void biquad_init(Biquad *f, float b0, float b1, float b2, float a1, float a2) { f->b0 = b0; f->b1 = b1; f->b2 = b2; f->a1 = a1; f->a2 = a2; f->x1 = f->x2 = 0; f->y1 = f->y2 = 0; } float biquad_process(Biquad *f, float in) { float out = f->b0*in + f->b1*f->x1 + f->b2*f->x2 - f->a1*f->y1 - f->a2*f->y2; f->x2 = f->x1; f->x1 = in; f->y2 = f->y1; f->y1 = out; return out; } int main() { // 示例:截止频率1kHz,采样率44.1kHz Biquad lp; biquad_init(&lp, 0.02008, 0.04017, 0.02008, // b系数 -1.561, 0.6414 // a系数 ); // 模拟输入信号(示例:直流+噪声) float input[] = {1,1,1,1,1,1,1,1,1,1}; for(int i=0; i<10; i++) { printf("Input: %.2f -> Output: %.4f\n", input[i], biquad_process(&lp, input[i])); } return 0; } ``` **三、关键注意事项** 1. **系数归一化**:设计滤波器时需保证a0=1,系数需预先归一化 2. **稳定性校验**:通过`a1² + a2² < 1`验证极点位置(简化判据) 3. **量化误差**:定点实现时需进行Q格式转换 ```c // 定点数示例(Q15格式) typedef struct { int16_t b0, b1, b2; int16_t a1, a2; int32_t x1, x2; // 扩展精度 int32_t y1, y2; } Biquad_Q15; ``` 4. **级联结构**:高滤波器建议采用多个二节级联 5. **内存优化**:可通过循环缓冲实现延迟线 **四、性能优化技巧** - 使用ARM CMSIS-DSP库的`arm_biquad_cascade_df1_f32`函数(ARM Cortex-M) - 采用SIMD指令并行计算多个样本 - 对于实时处理,建议采用环形缓冲区 - 使用查表法加速浮点运算(低端MCU) 实际工程中建议先用MATLAB/fdatool生成滤波器系数,再通过自动代码生成工具导出C代码结构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值