FZU2037 Maximum Value Problem 规律 + 递推

给你一个n,再给你一个 max=0,1到n这个序列进行全排列,一共有n!个排列,对于个每一个排列 max=0从第一个开始跟序列的值比较,比序列值小就更新,问max对于这些所有的全排列 一共更新了几次,并且输出更新的次数除以全排列数得到的值 保留六位小数,计算过程中要对1000000007进行取模

找规律f[]表示更新MAX的次数,num[]表示全排列,有多少个排列,ans[]表示除以得到的值

f[i] = f[i-1]*i+num[i-1];

num[i] = num[i]*i;

ans[i]=f[i]/num[i]=(f[i-1]*i+num[i-1])/num[i]=(f[i-1]*i+(i-1)!)/i!=f[i-1]/(i-1)!+1/i=ans[i-1]+1/i;//进行了化简


#include<iostream>
#include<cstdio>
#include<list>
#include<algorithm>
#include<cstring>
#include<string>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<cmath>
#include<memory.h>
#include<set>

#define ll long long

#define eps 1e-8

#define inf 0xfffffff

//const ll INF = 1ll<<61;

using namespace std;

//vector<pair<int,int> > G;
//typedef pair<int,int > P;
//vector<pair<int,int> > ::iterator iter;
//
//map<ll,int >mp;
//map<ll,int >::iterator p;

//struct Node {
//	int x,y;
//}node[100000 + 5];
//
//void clear() {
//	memset(node,0,sizeof(node));
//}
//
//int main() {
//	int t;
//	int Case = 0;
//	scanf("%d",&t);
//	int n;
//	while(t--) {
//		clear();
//		scanf("%d",&n);
//		for(int i=0;i<n;i++)
//			scanf("%d %d %d",&node[i].x,&node[i].y);
//
//	}
//}

const ll MOD = 1000000007;

ll f[1000000 + 5];//更新MAX的次数
ll num[1000000 + 5];//全排列,有多少个排列
double ans[1000000 + 5];

void init() {
	f[1] = 1;
	num[1] = 1;
	ans[1] = 1.0;
	for(ll i=2;i<1000005;i++) {
		f[i] = (f[i-1] * i + num[i-1])%MOD;
		num[i] = (num[i-1] * i)%MOD;
		ans[i] = ans[i-1] + 1.0/i;
	}
}

int main() {
	init();
	int t;
	int Case = 0;
	ll n;
	scanf("%d",&t);
	while(t--) {
		scanf("%I64d",&n);
		printf("Case %d: %I64d %.6lf\n",++Case,f[n],ans[n]);
	}
	return EXIT_SUCCESS;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值