为什么只含运算符∧,∨和¬的复合命题的对偶式也是等价的?

        假设复合命题AB,记A的对偶式为A*,B的对偶式为B*。假设A中有原子命题p1,p2,p3,......,同时还有若干个T以及若干个F......。B中有原子命题q1,q2,q3,......,同时还有若干个T和若干个F。对于T我们可以把它用(P∨¬P)做替换,对于F我们可以用(P∧¬P)做替换。我们可以假设一个一个函数Fa=(p1,p2,p3,.....,p,¬p,...),函数Fb=(q1,q2,q3,......,p,¬p,...)。其中Fa中的∧,∨符号与命题A一致,Fb中的∧,∨符号与命题B一致。首先我们对A中的所有命题变元取非,对应于函数即为Fa=(¬p1,¬p2,¬p3,......,¬p,p,......)Fb同理。每个命题变元取非后的A我们记做A撇,同理B的每个变元取非之后记做B撇。容易知道,此时A撇B撇。然后我们对A撇和B撇同时做非运算(尽可能多的应用德·摩根定律),对于A撇而言,A撇中的每个∨变为∧,每个∧变为∨。而¬p1,¬p2,¬p3,......,¬p,p,......变为p1,p2,p3,......p,¬p,.......。从而A撇变为A*,同理B撇变为B*。因为A撇和B撇同时做非运算,所以他们的结果仍然逻辑等价,即A*⇔B*。从而给出了一个证明的想法(因为我觉得我叙述的并不严谨,只是我的理解换成了文字)。

        笔者能力有限,所以读者可能会在某些地方存疑,比如说为什么要把T用(P∨¬P)做替换,F为什么要用(P∧¬P)做替换。下面我将用俩个具体的例子帮助读者理解。

        首先我们都知道结合律(p∨q)vr⇔p∨(q∨r),以此为例子首先介绍在无T,F的情况下如何证明其对偶式等价。首先对这俩个命题的所有变元取非,对于前面的命题变为(¬p∨¬q)v¬r,后面的命题变为¬p∨(¬q∨¬r)。他们仍是等价的,即(¬p∨¬q)v¬r¬p∨(¬q∨¬r)。然后对其取非,利用德·摩根定律做运算便得到结果(p∧q)∧r⇔p∧(q∧r),恰好得到其对偶式等价。

        最后我们举一个含有T的例子以解释为什么要把T换成(P∨¬P),首先容易知道p∧T⇔p∨p,如果按照上面的题对每个变元取非的话,T如何改变其实很难确认,因为T在此处不是个命题而是一个结果,我们是无法对一个结果做非运算的,只有命题才能做非运算,因此我们可以用(P∨¬P)做替换,我们可以知道这样的替换是等价的,因为(P∨¬P)是永真式(有些读者可能会称为重言式),替换之后再按照同样的步骤进行最终会得到这样的结果(因为过程和上面的例题类似就不赘述了):(p∨(P∧¬P))⇔p∧p,然后我们把(P∧¬P)替换回F,就得到了p∨F⇔p∧p,即其对偶式也是等价的,从而得到了证明。

        总之,希望读者在读第一段不甚了解的时自己举一些例子必然会对这个定理的证明有良好的理解。

  • 5
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值