homework2

1 证明:凸集的邻域是凸集

证明:
∀ u , v \forall u,v u,v ∈ \in X ϵ , X^\epsilon, Xϵ, ∀ θ ∈ [ 0 , 1 ] \forall \theta\in[0,1] θ[0,1]有:
i n f y ∈ X ∣ ∣ θ u + ( 1 − θ ) v − y ∣ ∣ inf_{y\in X}||\theta u+(1-\theta)v-y|| infyXθu+(1θ)vy = i n f y 1 , y 2 ∈ X ∣ ∣ θ u + ( 1 − θ ) v − ( θ y 1 + ( 1 − θ ) y 2 ) ∣ ∣ =inf_{y_1,y_2\in X}||\theta u+(1-\theta)v-(\theta y_1+(1-\theta) y_2)|| =infy1,y2Xθu+(1θ)v(θy1+(1θ)y2)
                                                      ≤ i n f y 1 , y 2 ∈ X ( ∣ ∣ θ ( u − y 1 ) ∣ ∣ + ∣ ∣ ( 1 − θ ) ( v − y 2 ) ∣ ∣ ) \leq inf_{y_1,y_2\in X}(||\theta (u-y_1)||+||(1-\theta)(v-y_2)||) infy1,y2X(θ(uy1)+(1θ)(vy2))
                                                      = i n f y 1 ∈ X ∣ ∣ θ ( u − y 1 ) ∣ ∣ + i n f y 2 ∈ X ∣ ∣ ( 1 − θ ) ( v − y 2 ) ∣ ∣ =inf_{y_1\in X}||\theta (u-y_1)||+inf_{y_2\in X}||(1-\theta)(v-y_2)|| =infy1Xθ(uy1)+infy2X(1θ)(vy2)
                                                      ≤ θ ϵ + ( 1 − θ ) ϵ \leq \theta\epsilon+(1-\theta)\epsilon θϵ+(1θ)ϵ
                                                      = ϵ =\epsilon =ϵ
                                                     因此, θ u + ( 1 − θ ) v ∈ X ϵ \theta u+(1-\theta)v\in X^{\epsilon} θu+(1θ)vXϵ
                                                     故 X ϵ X^\epsilon Xϵ是凸集。 ♯ \sharp

2 证明下列函数是对数凸的

(1)指数函数: f ( x ) = e a x f(x)=e^{ax} f(x)=eax R R R上对数凸的。

证明:
           l n ( f ( x ) ) = l n ( e a x ) ln(f(x))=ln(e^{ax}) ln(f(x))=ln(eax)的定义域为 R R R是凸集
           l n ( f ( x ) ) = l n ( e a x ) = a x ln(f(x))=ln(e^{ax})=ax ln(f(x))=ln(eax)=ax是仿射函数,因此 l n ( f ( x ) ) 是 凸 函 数 ln(f(x))是凸函数 ln(f(x))
          因此, f ( x ) = e a x f(x)=e^{ax} f(x)=eax是对数凸的。 ♯ \sharp

(2)指数函数之和: f ( u , v ) = e u + e v f(u,v)=e^u+e^v f(u,v)=eu+ev R 2 R^2 R2是对数凸的。

证明:
          知 g ( u , v ) = l n ( f ( u , v ) ) = l n ( e u + e v ) g(u,v) = ln(f(u,v))=ln(e^u+e^v) g(u,v)=ln(f(u,v))=ln(eu+ev)
          计算该函数的海塞矩阵: ∂ g ∂ u = e u e u + e v \frac{\partial g}{\partial u}=\frac{e^u}{e^u+e^v} ug=eu+eveu
∂ g ∂ v = e v e u + e v \frac{\partial g}{\partial v}=\frac{e^v}{e^u+e^v} vg=eu+evev
∂ g 2 ∂ 2 u = e u + v ( e u + e v ) 2 \frac{\partial g^2}{\partial^2 u}=\frac{e^{u+v}}{(e^u+e^v)^2} 2ug2=(eu+ev)2eu+v
∂ g 2 ∂ 2 v = e u + v ( e u + e v ) 2 \frac{\partial g^2}{\partial^2 v}=\frac{e^{u+v}}{(e^u+e^v)^2} 2vg2=(eu+ev)2eu+v
∂ g 2 ∂ u ∂ v = − e u + v ( e u + e v ) 2 \frac{\partial g^2}{\partial u \partial v}=\frac{-e^{u+v}}{(e^u+e^v)^2} uvg2=(eu+ev)2eu+v
∂ g 2 ∂ v ∂ u = − e u + v ( e u + e v ) 2 \frac{\partial g^2}{\partial v \partial u}=\frac{-e^{u+v}}{(e^u+e^v)^2} vug2=(eu+ev)2eu+v
H = [ e u + v ( e u + e v ) 2 − e u + v ( e u + e v ) 2 − e u + v ( e u + e v ) 2 e u + v ( e u + e v ) 2 ] H= \left[ \begin{matrix} \frac{e^{u+v}}{(e^u+e^v)^2} & \frac{-e^{u+v}}{(e^u+e^v)^2} \\ \frac{-e^{u+v}}{(e^u+e^v)^2}& \frac{e^{u+v}}{(e^u+e^v)^2} \end{matrix} \right] H=[(eu+ev)2eu+v(eu+ev)2eu+v(eu+ev)2eu+v(eu+ev)2eu+v]
∀ w ∈ R 2 \forall w\in R^2 wR2 w = [ w 1 , w 2 ] T w=[w_1,w_2]^T w=[w1,w2]T
w T H w = ( w 1 − w 2 ) 2 e u + v ( e u + e v ) 2 ≥ 0 w^THw=(w_1-w_2)^2\frac{e^{u+v}}{(e^u+e^v)^2} \geq0 wTHw=(w1w2)2(eu+ev)2eu+v0
所以H为半正定矩阵,由二阶条件可知, l n ( f ( u , v ) ) = l n ( e u + e v ) ln(f(u,v))=ln(e^u+e^v) ln(f(u,v))=ln(eu+ev)为凸函数,从而 e u + e v e^u+e^v eu+ev为对数凸的。 ♯ \sharp

3 构建数列

%(1)等差数列n1
n1 = 5:5:30 
%(2)等差数列n1
n2 = [1 2 4 8 10]'
%(3)等比数列n3
n3 = logspace(log(1)/log(10),log(625)/log(10),5)

第三题运行结果:
在这里插入图片描述

4 构建矩阵 5 矩阵操作

%(1)单位矩阵A
A = eye(4,4)
b = [1 2 3 4];
%(2)对角矩阵B
B = diag(b)
%(3)输入矩阵C
C = [10,19,14,9;
     30,38,37,6;
     66,64,62,54;
     89,7,45,23]
%(4)准对角矩阵D(使用单位矩阵和对角矩阵)
d1 = eye(3,3);
d_2 = [5 6 7];
d2 = diag(d_2);
D = blkdiag(d1,d2)
%(5)试水平串联矩阵A,B,得到4*8的矩阵E
E = horzcat(A,B)
%(6)试垂直串联矩阵A,B,得到4*8的矩阵E
F = vertcat(A,B)
%(7)试将矩阵A,B,C作为高维矩阵的第一,第二,第三页,得到矩阵G
G = cat(3,A,B,C)
%5矩阵操作
%(1)将矩阵E改变成形状为4*4*2的高维矩阵H
H = reshape(E,4,4,2)
%(2)获取高维矩阵G中第三页,第三行的第一、二列元素
G(3,1:2,3)
%(3)获取高维矩阵G中第二页,第二至四行的第一至三列元素
G(2:4,1:3,2)
%(4)将矩阵E中第二行的后四列元素的值与该行前四列互换
tmpE = E(2,5:8);
E(2,5:8) = E(2,1:4);
E(2,1:4) = tmpE;
E
%(5)用length函数查看矩阵G的最长维度
length(G)
%(6)用ndims函数查看矩阵G的维数
ndims(G)
%(7)用numel函数查看矩阵G的元素个数
numel(G)
%(8)用size函数查看矩阵G的行数、列数和页数
size(G)

第四题运行结果:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
第五题运行结果:
在这里插入图片描述
在这里插入图片描述

6 矩阵运算

P = [2,4,5,9;
    8,1,3,0;
    7,2,9,12];
Q = [2,11,3,9;
    4,5,7,1;
    6,8,7,0];
%(1)令矩阵P与Q相加,并赋值给J1
J1 = P+Q
%(2)令矩阵P减去Q,并赋值给J2
J2 = P-Q
%(3)将矩阵Q转置,并赋值给Q2
Q2 = Q'
%(4)让矩阵P中所有元素增加5,并赋给P2
P2 = P+5
%(5)令矩阵P与矩阵Q2相乘,并赋值给T
T = P*Q2
%(6)已知矩阵P*x = Q,求x(左除运算)
x = P\Q
%(7)已知矩阵x*Q = P,求x(右除运算)
x = P/Q
%(8)求方阵T(第5问中所求)的3次幂
T^3
%(9)将矩阵P与Q按元素相乘(按位乘)
P.*Q
%(10)求矩阵T(第5问中所求)的逆矩阵
inv(T)

第六题运行结果:
在这里插入图片描述
在这里插入图片描述

7 求最大公约数

%7请编写函数:让用户输入a,b,求其最大公约数(不考虑0)。
function divisionAlgorithm()
a = input('请输入a:');
b = input('请输入b:');
while b~=0%辗转相除法
    tmp = b;
    b = mod(a,b);
    a = tmp;
end
a

第七题运行结果:
在这里插入图片描述

8 正态分布矩阵的排序和按列输出

%请编写函数:让用户决定正态分布矩阵的行数和列数,
%显示正态分布矩阵,然后将矩阵中的所有元素从小到
%大排序,按列输出排序后的矩阵。
function myRandn()
    row = input('请输入行数row:');
    col = input('请输入列数col:');
    A = randn(row,col);
    A
    B = reshape(A,1,row*col);
    C = sort(B);
    D = reshape(C,row,col);
    D

第八题运行结果:
说明:A是未排序的正态矩阵,D是排序后按列输出的矩阵。
在这里插入图片描述
仅供参考,请勿抄袭

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值