描述
给出一个非负整数数组,你最初定位在数组的第一个位置。
数组中的每个元素代表你在那个位置可以跳跃的最大长度。
判断你是否能到达数组的最后一个位置。
注意事项
这个问题有两个方法,一个是贪心和 动态规划。
贪心方法时间复杂度为O(N)。
动态规划方法的时间复杂度为为O(n^2)。
我们手动设置小型数据集,使大家阔以通过测试的两种方式。这仅仅是为了让大家学会如何使用动态规划的方式解决此问题。如果您用动态规划的方式完成它,你可以尝试贪心法,以使其再次通过一次。
样例
A = [2,3,1,1,4],返回 true.
A = [3,2,1,0,4],返回 false.
思考
- 整体分为有 0, 没 0 两种情况
- 没 0 返回 true, 有 0 分为 头部,中部,尾部
- 头部返回 false , 中部尾部需要判断是否有超过该 0 位置的最大长度
代码
// By Lentitude
class Solution {
public:
/**
* @param A: A list of integers
* @return: The boolean answer
*/
bool canJump(vector<int> A) {
// write you code here
// 如果 A 数组的大小 < 2 , 则返回true
if (A.size() < 2) return true;
for (int i = 0; i != A.size(); ++i){
if (A[i] == 0){
//如果存在 0 的话
if (i == 0) return false; // 如果 0 在首位,则返回 false
// 从 0 位置向前遍历, 如果某个位置的最大长度超过之间的距离, 遍历下一个 0, 否则返回 false
int j = i - 1;
while (j < i && j >= 0){
if (A[j] <= i - j){
// 等于有一种情况, 就是 0 在末尾, 在这种情况下是成立的
if (i == A.size() - 1){
return true;
}
--j;
}else{
break;
}
}
// 如果 j = -1, 说明此时找不到超过该 0 的最大长度, 返回 false
if (j == -1){
return false;
}else{
// 否则, 这个 0 通过,对下一个 0 进行判断
continue;
}
}
}
// 当全部遍历完成, 而没有返回 false 时, 返回 true
return true;
}
};