图像增强/颜色管理/3A

参考文章:

HDR之双边滤波和引导滤波, 图像增强模块简介, 论文解读

https://blog.csdn.net/yywxl/article/details/108976002

色相/饱和度

图像处理——饱和度调整算法(python语言)

https://blog.csdn.net/Benja_K/article/details/95478100

PS 图像调整算法——饱和度调整

https://blog.csdn.net/weixin_30915275/article/details/95619560

色彩管理, CCM计算代码实现

色域马蹄图是怎么来的?——CIE 1931 XYZ色彩空间详解

https://zhuanlan.zhihu.com/p/137639368

colorcorrectionmatrix, 简易代码实现, 转到LabCIE色彩空间, 参考文献不错

https://github.com/lighttransport/colorcorrectionmatrix

Light Transport Entertainment, Inc.专栏文章

https://github.com/lighttransport

Linear_Color_Correction_Matrix

https://github.com/RayXie29/Linear_Color_Correction_Matrix

CCM, 计算, 简易

https://github.com/rafeichu/CCM

ColorMatrix, 安卓端的调色软件

https://github.com/yukunkun/ColorMatrix

Android颜色矩阵ColorMatrix详解

https://blog.csdn.net/c6E5UlI1N/article/details/82756313

色彩管理基础知识

CIELAB color space, Lab色彩空间, 用于CCM计算, L层可做锐利度提升

https://en.wikipedia.org/wiki/CIELAB_color_space

RGB与Lab颜色空间互相转换

https://blog.csdn.net/lz0499/article/details/77345166

HSV颜色空间 与 RGB 颜色空间的相互转换

https://blog.csdn.net/cinmyheart/article/details/40348831

颜色空间系列1: RGB和CIEXYZ颜色空间的转换及相关优化, 该博主主攻指令集的视觉算法加速, 以下文章均是该作者

https://cloud.tencent.com/developer/article/1504631

颜色空间系列2: RGB和CIELAB颜色空间的转换及优化算法

https://cloud.tencent.com/developer/article/1504015

颜色空间系列3: RGB和YCbCr颜色空间的转换及优化算法

https://cloud.tencent.com/developer/article/1503878

颜色空间系列4: RGB和YDbDr颜色空间的转换及优化算法

https://cloud.tencent.com/developer/article/1503999

一种具有细节保留功能的磨皮算法

https://cloud.tencent.com/developer/article/1011793

SSE图像算法优化系列十二:多尺度的图像细节提升

https://cloud.tencent.com/developer/article/1011939

YUV色域空间

如何理解 YUV ?

https://zhuanlan.zhihu.com/p/85620611

ubuntu 下播放 yuv 格式的文件&预览Raw格式图片

https://blog.csdn.net/qq839787886/article/details/89676674

Imatest使用和原理讲解, 色彩管理

Color Correction Matrix (CCM)

https://www.imatest.com/docs/colormatrix/

Color/Tone Auto: fixed (batch-capable) analysis

https://www.imatest.com/docs/color-tone/

24色卡标准值介绍

https://xritephoto.com/ph_product_overview.aspx?ID=820&Action=support&SupportID=5159

自动曝光

Understanding Auto Exposure Control,自动曝光实现,github代码,"Automatic Camera Exposure Control"论文

https://zhuanlan.zhihu.com/p/100369527

https://github.com/alexzzhu/auto_exposure_control

Analyze RAW images from a timelapse, and auto - ramp the exposure, 分析单反相机raw图

https://github.com/DevonCrawford/Timelapse-Auto-Ramp-Photoshop-Plugin

Automatic exposure algorithm based on frame difference method, 参考性较弱

https://github.com/Hjincheng/auto-exposure

白平衡基础知识

基于灰度世界、完美反射、动态阈值等图像自动白平衡算法的原理、实现及效果

https://cloud.tencent.com/developer/article/1503981

白平衡之完美反射算法

https://blog.csdn.net/yz2zcx/article/details/105328002

经典AWB(自动白平衡)算法——灰度世界算法

https://blog.csdn.net/weixin_45224869/article/details/109191570

白平衡(Color Constancy,无监督AWB):CVPR2019论文解析, Quasi-Unsupervised Color Constancy

https://blog.csdn.net/wujianing_110117/article/details/105481246

AWB代码实现

C++ Automated white balance using lodepng and some color correction

https://github.com/AFLProjects/White-Balance-Automation

efficient and robust white balance algorithm

https://github.com/yuanxy92/AutoWhiteBalance

Fast Fourier Color Constancy Matlab Toolbox,谷歌颜色恒常AWB

https://github.com/google/ffcc

边缘增强代码实现

EdMot: An Edge Enhancement Approach for Motif-aware Community Detection,论文代码实现

https://github.com/benedekrozemberczki/EdMot

PyTorch implementation of EdgeFool: An Adversarial Image Enhancement Filter, ICASSP2020

https://github.com/smartcameras/EdgeFool

其他图像增强算法

深度学习(二十三)——Fast Image Processing, SVDF, LCNN, LSTM进阶

https://blog.csdn.net/antkillerfarm/article/details/80046138

水下图像的边缘增强, 色彩恢复

https://github.com/paulpanwang/hikvision

SDC-term1-Advanced-Lane-Finding, 车道线检测代码

https://github.com/ttungl/SDC-term1-Advanced-Lane-Finding

ISP与缺陷检测融合

全网最全开源工业缺陷数据集汇总(已更新24个)

https://blog.csdn.net/qq_41742361/article/details/108352833

InsulatorDataSet, 高压线绝缘数据集

https://github.com/InsulatorData/InsulatorDataSet

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值