问题描述
设序列L={a1,a2,…,an}是n个不同的整数序列,序列L中最长递增子序列LIS={ak1,ak2,…,akm},其中k1<k2<…<km且ak1<ak2<…<akm。求最大的m值。
思路分析
1、把a1,a2,...,an排序,假设得到a'1,a'2,...,a'n,然后求a的a'的最长公共子串,这样总的时间复杂度为o(nlg(n))+o(n^2)=o(n^2);
2、动态规划的思路:
另设一辅助数组b,定义b[n]表示以a[n]结尾的最长递增子序列的长度,则状态转移方程如下:b[k]=max(max(b[j]|a[j]<a[k],j<k)+1,1);(见状态转移方程)
状态转移方程
设辅助数组b[],定义b[n]表示以a[n]结尾的最长递增子序列的长度,状态转移方程表示为:
b[k] = max ( max(b[j]|a[j]<a[k], j<k)+1, 1 )
其中0<=k<=n-1,在a[k]前面找到满足a[j]<a[k]的最大b[j],a[k]作为后继,得到a[k]的最长递增子序列的长度,如果a[k]前面没有更小的a[j],此时a[k]形成序列,长度为1,继续计算,最后整个序列的最长递增子序列:max(b[k] |0<=k<=n-1),此时时间复杂度仍为O(n^2)。
另外定义一数组c,c中元素满足c[b[k]]=a[k],即当递增子序列的长度为b[k]时子序列的末尾元素为c[b[k]]=a[k]。
实现代码
第一种思路:
#include<stdio.h> //时间复杂度O(n^2)
int main()
{
int i,j,k,n,a[100],b[100],c[100],max;
while(scanf("%d",&n)!=EOF)
{
for(i=0;i<n;i++)
scanf("%d",&a[i]);
b[0]=1; //初始化,以a[0]结尾的最长递增子序列长度为1
c[0]=a[0]; k=1;
for(i=1;i<n;i++)
{
b[i]=1; //b[i]最小值为1
for(j=0;j<i;j++)
if(a[i]>a[j] && b[j]+1>b[i])
{
b[i]=b[i]+1;
}
}
for(max=i=0;i<n;i++) //求出整个序列的最长递增子序列的长度
if(b[i]>max)
max=b[i];
printf("%d/n",max);
}
return 0;
}
第二种思路:
#include<stdio.h> //时间复杂度(O(nlogn)),存在缺陷,对c的赋值,简化则不存在
int find(int *a,int len,int n)
{//若返回值为x,则a[x]>=n>a[x-1]
int left=0,right=len,mid=(left+right)/2;
while(left<=right)
{
if(n>a[mid]) left=mid+1;
else if(n<a[mid]) right=mid-1;
else return mid;
mid=(left+right)/2;
}
return left;
}
void fill(int *a,int n) //赋值处,值的大小会有影响
{
for(int i=0;i<=n;i++)
a[i]=1000;
}
int main()
{
int max,i,j,n,a[100],b[100],c[100];
while(scanf("%d",&n)!=EOF)
{
fill(c,n+1); //!!!!!!!!!!!!!!!!重要的地方
for(i=0;i<n;i++)
scanf("%d",&a[i]);
c[0]=-1; // …………………………………………1
c[1]=a[0]; // ……………………………………2
b[0]=1; // …………………………………………3
for(i=1;i<n;i++) // ………………………………4
{
j=find(c,n+1,a[i]); // ……………………5
c[j]=a[i]; // ………………………………6
b[i]=j; //……………………………………7
}
for(max=i=0;i<n;i++) //………………………………8
if(b[i]>max)
max=b[i];
printf("LIS的长度为:%d/n",max);
printf("具体的数据为:/n");
for(i=1;i<=max;i++)
printf("%d ",c[i]);
printf("/n");
}
return 0;
}
对于这段程序,我们可以用算法导论上的loop invariants来帮助理解.
loop invariant: 1、每次循环结束后c都是单调递增的。(这一性质决定了可以用二分查找
2、每次循环后,c[i]总是保存长度为i的递增子序列的最末的元素,若长度为i的递增子序列有多个,刚保存末尾元素最小的那个.(这一性质决定是第3条性质成立的前提)
3、每次循环完后,b[i]总是保存以a[i]结尾的最长递增子序列。
initialization: 1、进入循环之前,c[0]=-1,c[1]=a[0],c的其他元素均为1000,c是单调递增的;
2、进入循环之前,c[1]=a[0],保存了长度为1时的递增序列的最末的元素,且此时长度为1的递增了序列只有一个,c[1]也是最小的;
3、进入循环之前,b[0]=1,此时以a[0]结尾的最长递增子序列的长度为1.
maintenance: 1、若在第n次循环之前c是单调递增的,则第n次循环时,c的值只在第6行发生变化,而由c进入循环前单调递增及find函数的性质可知(见find的注释),此时c[j+1]>c[j]>=a[i]>c[j-1],所以把c[j]的值更新为a[i]后,c[j+1]>c[j]>c[j-1]的性质仍然成立,即c仍然是单调递增的;
2、循环中,c的值只在第6行发生变化,由c[j]>=a[i]可知,c[j]更新为a[i]后,c[j]的值只会变小不会变大,因为进入循环前c[j]的值是最小的,则循环中把c[j]更新为更小的a[i],当然此时c[j]的值仍是最小的;
3、循环中,b[i]的值在第7行发生了变化,因为有loop invariant的性质2,find函数返回值为j有:c[j-1]<a[i]<=c[j],这说明c[j-1]是小于a[i]的,且以c[j-1]结尾的递增子序列有最大的长度,即为j-1,把a[i]接在c[j-1]后可得到以a[i]结尾的最长递增子序列,长度为(j-1)+1=j;
termination: 循环完后,i=n-1,b[0],b[1],...,b[n-1]的值均已求出,即以a[0],a[1],...,a[n-1]结尾的最长递
增子序列的长度均已求出,再通过第8行的循环,即求出了整个数组的最长递增子序列。
仔细分析上面的代码可以发现,每次循环结束后,假设已经求出c[1],c[2],c[3],...,c[len]的值,则此时最长递增子序列的长度为len,因此可以把上面的代码更加简化,即可以不需要数组b来辅助存储,第8行的循环也可以省略。
简化后的代码:
//简化后的
#include<stdio.h>
int find(int *a,int len,int n)
{ //修改后的二分查找,若返回值为x,则a[x]>=n
int left=0,right=len,mid=(left+right)/2;
while(left<=right)
{
if(n>a[mid]) left=mid+1;
else if(n<a[mid]) right=mid-1;
else return mid;
mid=(left+right)/2;
}
return left;
}
int main()
{
int n,a[100],c[100],i,j,len; //新开一变量len,用来储存每次循环结束后c中已经求出值的元素的最大下标
while(scanf("%d",&n)!=EOF)
{
for(i=0;i<n;i++)
scanf("%d",&a[i]);
c[0]=-1; c[1]=a[0];
len=1; //此时只有c[1]求出来,最长递增子序列的长度为1.
for(i=1;i<n;i++)
{
j=find(c,len,a[i]);
c[j]=a[i];
if(j>len) //要更新len,另外补充一点:由二分查找可知j只可能比len大1
len=j; //更新len
}
printf("LIS的长
度为:%d/n",len);
printf("具体元素为:/n");
for(i=1;i<=len;i++)
printf("%d ",c[i]);
printf("/n");
}
return 0;
}