人工智能基础(六) numpy基础学习

本文介绍了numpy库在Python科学计算中的重要性,包括其内存优化的ndarray对象、多维数组操作、数据类型以及创建数组的方法。讲解了如何进行数组索引、形状修改和类型转换,并探讨了numpy的逻辑运算、统计函数以及随机数生成。此外,还阐述了numpy在并行计算和向量化运算方面的优势,对于提升代码效率有显著作用。
摘要由CSDN通过智能技术生成

numpy基础学习

numpy 优势

1.定义

开源的Python科学计算库,用于快速处理任意纬度的数组
numpy中,存储对象是ndarry
2.创建

np.array([])

3.numpy的优势

  • 内存块风格 ----- 一体式存储
  • ndarray支持并行化运算(向量化运算)
  • 效率远高于纯Python代码 — 底层使用了C,内部释放了GIL

N维数组 – ndarry

1.ndarray属性
属性名字 属性解释
ndarray.shape 数组维度的元组
ndarray.ndim 数组维数
ndarray.size 数组中的元素数量
ndarray.itemsize 一个数组元素的长度(字节)
ndarray.dtype 数组元素的类型
2. ndarray的形状
np.array()
三维数组不好理解 – excel中有多个sheet

3.ndarry的类型
bool
int
float
str

注意:若不指定,整数默认Int, 小数默认float

基本操作

生成数组的方法
1.1 生成0和1的数组

np.ones()
np.ones_like()

2.从现有数组中生成

np.array – 深拷贝
np.asarray – 浅拷贝

3.生成固定范围数组
np.linspace (start, stop, num, endpoint)
num — 生成等间隔的多少个
np.arange(start,stop, step, dtype)
step — 每间隔多少生成数据
np.logspace(start,stop, num)
生成以10的N次幂的数据

生成随机数组

1.均匀分布生成
np.random.uniform()
low
high
size

2.正态分布
均值,方差
均值 — 图形的左右位置
方差 — 图像是瘦,还是胖
值越小,图形越瘦高,数据越集中
值越大,图形越矮胖,数据越分散

3.正态分布API
np.random.normal()
low
high
size

数组索引切片

直接索引,先对行进行索引,再进行列的索引
高维数组索引,从宏观到微观

形状修改

1.对象.reshape
不进行行列互换,产生新变量
2.对象.resize
进行行列互换,对原值进行更改
3.对象.T
进行行列互换

类型修改

对象.astype()

数组去重

np.unique()

ndarray运算

1.逻辑运算

大于,小于直接进行判断
赋值:满足要求,直接进行赋值

2.通用判断函数

np.all()
所有满足要求,才返回ture
np.any()
只要有一个满足要求,就返回true

3.三元运算符
np.where()
满足要求赋值给第一个值,否则赋值给第二个值
np.logical_and()

np.logical_or()

4.统计运算
min
max
midian
mean
std — 标准差
var — 方差
argmax — 最大值方差
argmin — 最小值方差

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值