numpy中np.c_和np.r_

#例子

import numpy as np
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
c = np.c_[a,b]

print(np.r_[a,b])
print(c)
print(np.c_[c,a])

#####np.r_是按列连接两个矩阵,就是把两矩阵上下相加,要求列数相等,类似于pandas中的concat()。
#####np.c_是按行连接两个矩阵,就是把两矩阵左右相加,要求行数相等,类似于pandas中的merge()。
结果:

[1 2 3 4 5 6]

[[1 4]
 [2 5]
 [3 6]]
 
[[1 4 1]
 [2 5 2]
 [3 6 3]]

在numpy中,一个列表虽然是横着表示的,但它是列向量。

----------------------------------------------------------------2019-07-10---------------------------------------------
还是有人说我写反了。。。
原文例子是一维向量,你要把它看成列向量,不是行向量,所以你们都说我写反了。现在换成2x3的向量,就清楚了。

import numpy as np
a = np.array([[1, 2, 3],[4,5,6]])
b = np.array([[0, 0, 0],[1,1,1]])
print("-------------------a------------------")
print(a)
print("-------------------b------------------")
print(b)
print("-------------------np.r_[a,b]--------------------")
print(np.r_[a,b])
print("--------------------np.c_[a,b]-------------------")
print(np.c_[a,b])

输出如下:
-------------------a------------------
[[1 2 3]
[4 5 6]]
-------------------b------------------
[[0 0 0]
[1 1 1]]
-------------------np.r_[a,b]--------------------
[[1 2 3]
[4 5 6]
[0 0 0]
[1 1 1]]
--------------------np.c_[a,b]-------------------
[[1 2 3 0 0 0]
[4 5 6 1 1 1]]

评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值