POJ - 2674 Linear world(弹性碰撞)

Time Limit: 3000MS Memory Limit: 65536KB 64bit IO Format: %lld & %llu

 Status

Description

The Disc, being flat, has no real horizon. Any adventurous sailors who get funny ideas from staring at eggs and oranges for too long and set out for the antipodes soon learned that the reason why distant ships sometimes looked as though they were disappearing over the edge of the world was that they were disappearing over the edge of the world. (Terry Pratchett -Colour of Magic) 
Not so long time ago people used to believe that they live on 2-D world and if they will travel long enough in one direction, they will fall down over the edge. Even when it was proved that the Earth is rounded some of them were still afraid to travel to the southern hemisphere. 
Try to imagine one 1-D (linear) world. On such world there are only two possible directions (left and right). All inhabitants of such world were created exactly at the same time and suddenly all of them start to move (all with same constant velocity) in one or the other direction. If two inhabitants encounter each other, they politely exchange greetings and then they turn around and start to move in an opposite direction. When an inhabitant reaches the end of the world he falls away and disappears. 
Your task is to determine, for a given scenario of creation, which inhabitant and when (counting from the moment of creation) will be the last one to fall away. You can assume that the time required to exchange greetings and turn around is 0.

Input

The input consists of multiple descriptions (data sets) of the creation moment. File structure is as follows: 

LV 
DIR POS NAME 
... 
The first line defines the number of inhabitants (N<32000). Data set starting with value N=0 represents the end of the input file. The second line contains length of the world L(float) and velocity of inhabitants V(float). Both values are always positive. In next N lines the data about inhabitants are given in an order of increasing POS (positive direction): 
DIR – initial direction ('p' or 'P' for positive and 'n' or 'N' for negative) 
POS – position in the time of creation (0<=POS<=L) 
NAME – name of inhabitant (string up to 250 characters) 
Input values within one line are separated with at least one space and there will be no empty lines in input. You may assume that input is always correct and that each data set has only one unique solution.

Output

The output consists of one line per each input data set. The first value should be the time when the last inhabitant will fall of the linear world counting from the moment of creation. Value should be printed truncated to two decimal places in a field 13 characters wide. The second value should be the name of the inhabitant. Values should be separated with single space character.

Sample Input

1   
13.5 2   
p 3.5 Smarty  
4  
10  1  
p  1  Helga  
n 3 Joanna  
p  5  Venus  
n  7  Clever  
0 

Sample Output

         5.00 Smarty
         9.00 Venus

题目大意

    给定一条直线,长度为L 表示区间[0, L]。在直线上开始放置N个人,每个人有一个初始位置pos(用到直线上端点0的距离表示)和初始方向dir('p' 或 'P' 表示向端点L行走, 'n'或'N'表示向端点0行走),然后所有的人都开始沿着自己的方向用相同的速度v行走,若走到端点0或端点L,则此人掉下去;若两个方向相反的人碰到一起,则分别掉头,继续行走(速度不变)。 
    求出最后掉下去的人,和掉下去的时间。

题目分析

    弹性碰撞的问题,如果只是求最后掉下的时间,由于碰撞只是交换方向,速度不变,因此可以视为两个人只是“擦肩而过”,各自的速度方向均未发生变化,这样转换之后的整体的效果和之前的整体的效果是一样的。那么,求最后掉下的时间就可以直接求每个人走到各自方向的端点所需要的时间,然后求最大值即可。此时,记录获得最大值的人为A。 
    然而此题还需要求最后掉下去的人是谁,那么最后掉下去的人肯定就是和A碰撞过的人一直不停的碰撞的最后一个人。即,若A和B碰撞,之后B又和C碰撞,之后C又和.... 的最后一个人。 
    可以按照初始位置对N个人进行排序,找出从A到A方向的端点之间和A方向相反的人的个数count,可以画图得知,从A开始,沿着A的方向的第count个人,就是最后和A碰撞之后的人碰撞的那个人,输出即可。


这题就是蚂蚁碰撞模板,难得是求第几个人,,根据碰撞的顺序找规律,,,


#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const int N = 40000;
struct node
{
    int dir, id;
    double pos, t;
    char name[300];
}p[N];
int cmp(node a,node b)
{
    return a.pos<b.pos;
}


int main()
{
    int n;
    while(scanf("%d", &n),n!=0)
    {
        double l, v;
        scanf("%lf %lf", &l, &v);
        int id;
        double tmp=0;
        for(int i=0;i<n;i++)
        {
            char s[10];
            scanf("%s %lf %s",s, &p[i].pos, p[i].name);
            if(s[0]=='p'||s[0]=='P')
            {
                p[i].dir=1;
                p[i].t=(l-p[i].pos)/v;
            }
            else
            {
                p[i].dir=0;
                p[i].t=(p[i].pos)/v;
            }
        }
        sort(p,p+n,cmp);
        for(int i=0;i<n;i++)
        {
            if(p[i].t>tmp)
            {
                id=i;
                tmp=p[i].t;
            }
        }
        if(p[id].dir==0)
        {
            int cnt=0;
            for(int i=id;i>=0;i--)
            {
                if(p[i].dir==1)
                {
                    cnt++;
                }
            }
            printf("%13.2lf %s\n",int(p[id].t*100)/100.0,p[id-cnt].name);
        }
        else
        {
            int cnt=0;
            for(int i=id+1;i<n;i++)
            {
                if(p[i].dir==0)
                {
                    cnt++;
                }
            }
            printf("%13.2lf %s\n",int(p[id].t*100)/100.0,p[id+cnt].name);
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值