zzuli 2131: Can Win(最大流 公平分配)@

2131: Can Win

Time Limit: 1 Sec   Memory Limit: 128 MB
Submit: 265   Solved: 27

Submit Status Web Board

Description

Zhc很喜欢看某个竞技比赛,比赛的规则是这样的:队伍分成AB两组进行比赛,除了组内比赛,两组之间还会进行一定的比赛,每场比赛赢者得1分,输者不得分,没有平局的情况。 在A组里面Zhc有一支自己非常喜欢的队伍,现在比赛已经进行到一半了,Zhc想知道,他支持的那支队伍有没有可能获得最终的胜利(A组最高分即为胜利,允许多支队伍同时最高分)

 

Input

 第一行输入样例组数T<=110

每组样例第一行输入A组队伍数量n<=400,以及Zhc支持的队伍编号(1-n)K<=n

第二行按编号输入A组各队伍目前的成绩Mark[i]<= 300000

第三行按编号输入A组各队伍剩余比赛总场数Cnt[i]<= 300000

下面有一个N*N的矩阵,其中A[i][j]代表编号i的队伍跟编号j的队伍剩余比赛场数A[i][j]<=100

 

Output

 对每组样例输出”Yes”或者”No”(不用输出引号)代表Zhc支持的队伍能获得最终的胜利,换行处理

 

Sample Input

1
2 1
5 6
2 2
0 1
1 0

Sample Output

Yes



#include <iostream>
#include <bits/stdc++.h>
using namespace std;
const int N = 500;
typedef long long LL;
int m[N], c[N], w[N][N], a[N];
const int inf = 99999999;
const int MAXN = 200010;
struct Edge
{
    int to, next, cap, flow;
} edge[MAXN*10];
int tol;
int head[MAXN];
int gap[MAXN], dep[MAXN], pre[MAXN], cur[MAXN];
void init()
{
    tol = 0;
    memset(head, -1, sizeof(head));
}
void add(int u, int v, int w, int rw = 0)
{
    edge[tol].to = v;edge[tol].cap = w;edge[tol].next = head[u];edge[tol].flow = 0;head[u] = tol++;
    edge[tol].to = u;edge[tol].cap = rw;edge[tol].next = head[v];edge[tol].flow = 0;head[v] = tol++;
}
int sap(int start, int end, int N)
{
    memset(gap, 0, sizeof(gap));
    memset(dep, 0, sizeof(dep));
    memcpy(cur, head, sizeof(head));
    int u = start;
    pre[u] = -1;
    gap[0] = N;
    int ans = 0;
    while(dep[start] < N)
    {
        if(u == end)
        {
            int Min = inf;
            for(int i = pre[u]; i != -1; i = pre[edge[i^1].to])
                if(Min > edge[i].cap - edge[i].flow)
                    Min = edge[i].cap - edge[i].flow;
            for(int i = pre[u]; i != -1; i = pre[ edge[i ^ 1].to ])
            {
                edge[i].flow += Min;
                edge[i^1].flow -= Min;
            }
            u = start;
            ans += Min;
            continue;
        }
        bool flag = false;
        int v;
        for(int i = cur[u]; i != -1; i = edge[i].next)
        {
            v = edge[i].to;
            if(edge[i].cap - edge[i].flow && dep[v] + 1 == dep[u])
            {
                flag = true;
                cur[u] = pre[v] = i;
                break;
            }
        }
        if(flag)
        {
            u = v;
            continue;
        }
        int Min = N;
        for(int i = head[u]; i != -1; i = edge[i].next)
        {
            if(edge[i].cap - edge[i].flow && dep[edge[i].to] < Min)
            {
                Min = dep[edge[i].to];
                cur[u] = i;
            }
        }
        gap[dep[u]]--;
        if(!gap[dep[u]])
            return ans;
        dep[u] = Min+1;
        gap[dep[u]]++;
        if(u != start)
            u = edge[ pre[u] ^ 1 ].to;
    }
    return ans;
}


int check(int n,int tmp)
{
    for(int i=1;i<=n;i++)
    {
        if(m[i]>tmp) return 1;
    }
    return 0;
}
int main()
{
    int t;
    scanf("%d", &t);
    while(t--)
    {
        int n, s;
        scanf("%d %d", &n, &s);
        int maxt=INT_MIN;
        for(int i=1;i<=n;i++)
        {
            scanf("%d", &m[i]);
            maxt=max(maxt,m[i]);
        }
        for(int i=1;i<=n;i++) scanf("%d", &c[i]);
        int sum=0;
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                scanf("%d", &w[i][j]);
                if(j>i) sum+=w[i][j];
            }
        }
        int tmp=m[s]+c[s];
        if(check(n,tmp))
        {
            cout<<"No"<<endl;
            continue;
        }
        init();
        int sx=0, ex=n+1, k=n+2;
        for(int i=1;i<=n;i++)
        {
            if(i==k) continue;
            add(i,ex,tmp-m[i]);
            for(int j=i+1;j<=n;j++)
            {
                if(j==k) continue;
                add(sx,k,w[i][j]);
                add(k,i,inf);
                add(k,j,inf);
                k++;
            }
        }
        int ans=sap(sx,ex,k);
        if(ans!=sum) printf("No\n");
        else printf("Yes\n");
    }
    return 0;
}






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值