系列文章目录
《SAR学习笔记》
目录
前言
前面介绍的RDA算法以及CSA算法本质上都是利用同距离目标的多普勒历程相似的性质,在距离多普勒域上对方位向进行匹配滤波,实现同距离目标的“批量”脉压处理。由于回波信号距离多普勒域表达式在由距离频域方位频域表示式推导过程中进行了小角度近似,导致成像精度受限于小斜视角范围,这部分内容在《SAR学习笔记-SAR成像算法系列(一)》有介绍,感兴趣的可以看看。这节内容介绍的wK算法将在距离频域-方位频域上处理信号,绕开小角度近似的约束条件,能够在大斜视角场景中成像。
一、算法原理
一般情况,SAR成像算法的不同主要在于如何解决两个关键问题:距离方位匹配滤波滤波器如何设计;距离方位如何解耦合。RDA算法基于回波信号在距离多普勒上的特点设计距离向匹配滤波器和方位向匹配滤波器(空不变假设),在进行距离脉压之后通过插值方式实现距离方位解耦合。CSA算法通过变标处理使得不同距离处目标的距离徙动曲线形状在距离多普勒域上与参考距离处目标的一致,然后通过相位相乘即可实现距离方位的解耦合,距离方位匹配滤波器是基于变标后的表达式设计的。
wK算法在距离频域方位频域设计参考距离处的距离方位匹配滤波器,并将此二维频域滤波器作为所有目标的匹配滤波器,实现一致压缩。一致压缩可以认为是距离方位的粗脉压,对于处于参考距离的目标,这种压缩是精确的,对于不处于参考距离的目标,这种压缩存在高阶耦合相位相位,为此wK算法采用Stolt插值消除距离方位的高阶耦合,最后通过二维IFFT处理得到聚焦后的SAR图像,下面具体介绍。
二、算法步骤
2.1 回波信号获取
接收的回波信号经过下变频得: