极坐标格式算法(PFA)-SAR成像算法系列(六)

系列文章目录

SAR学习笔记

SAR学习笔记-代码部分

SAR学习笔记后续-phased工具箱介绍

SAR学习笔记-SAR成像算法系列(一)

后向投影算法(BPA)-SAR成像算法系列(二)

距离多普勒算法(RDA)-SAR成像算法系列(三)

线性调频变标算法(CSA)-SAR成像算法系列(四)

wk算法-SAR成像算法系列(五)


       前面介绍的算法大都应用于条带模式下的SAR处理,本节将介绍聚束模式下的极坐标格式算法。与之前介绍的算法不同,该算法首先进行dechirp处理,信号带宽大幅下降,可以大大降低信号采样率(尤其是距离维的采样率),然后通过RVP补偿处理使得距离信号包络统一,最后基于平面波近似假设,将采集数据按照波束指向的方式进行存储,并在极坐标下对数据进行插值处理。与wKA算法一样,该算法能够在大斜视情况下实现SAR成像,但同样受限于小尺寸成像场景,下面具体介绍。


一、算法原理

           

       上述两幅图分别表示SAR的两种成像模式,分别时条带模式和聚束模式:条带模式下,雷达天线波束指向相对于平台飞行方向保持固定,并随平台的移动在地面照射出一个与航迹平行的带状区域,此时同距离处目标的多普勒历程基本一致,只是时延不同;聚束模式下,雷达天线始终指向固定的成像区域,通过雷达视角的移动使得目标的合成孔径时间极大增加,且不受限于天线波束宽度,由于整个信号采样时间,天线波束始终照射目标区域,同距离处目标的多普勒历程并不一致。基于聚束SAR的成像特点,极坐标格式算法PFA被用于此场景下的SAR成像。个人看法,PFA算法的理解的关键有三个:dechirp处理的原理;RVP补偿原理;以及平面波假设下的插值原理。

      

       首先是dechirp处理,实际上dechirp包括距离维的dechirp以及方位维的dechirp,原理如上图所示,利用参考点的距离和方位生成对应的二维dechirp滤波器。通过距离维的dechirp处理,可以将目标与参考点的距离差转化为距离维的频率差,该频率差固定只与距离有关,与方位无关;通过方位维的dechirp处理。可以将目标与参考点的方位转化为方位维的频率差,该频率只与方位有关,与距离无关。所以dechirp出后的定位不再是根据回波包络的位置确定对应的距离方位值,而是由距离维、方位维的频率差确定。为了使dechirp后的距离维包络同一,需要进行一步叫“去距离扭曲” 的步骤,即RVP补偿。

  

         RVP补偿能够去距离扭曲的原理的简单理解:时域平移对应频域相位相乘,为使时域向右平移\Delta \tau,对应的频域相位乘以e^{-j2\pi f_{\tau }\Delta \tau },而\Delta \tau =\frac{f_{\tau }}{2K},因此,只需在频域乘以e^{-j\pi \frac{f_{\tau }^{2}}{K} }。这种理解只是便于快速理解,并不严谨,下面公式会具体推导。通过RVP补偿,距离维包络统一到参考点处理的距离包络,同时信号相位中瞬时距离差的平方项也被去除。此时,距离、方位的包络与目标位置无关,不用分析其对成像的影响。

  

       基于平面波假设,目标与参考点之间瞬时距离差为OP沿场景中心波束方向的投影,距离差的计算可以不依赖于平台对目标的指向,可以通过平台对参考点的指向以及目标对参考点的指向得到距离差的计算,即可以认为场景内的任意目标其波束指向与对场景中心的波束指向相同,这样可以用平台对场景中心的波束指向存储数据了。之前介绍的数据存储是按照快时间、慢时间的标度进行存储的,这里对于不同慢时间t,平台的波束指向确定,考虑到目标没有高程,则最终回波信号的相位只与波数矢量沿x,y轴的分量kx,ky有关,因此快时间、慢时间会与对应的kx,ky存在一一对应关系。由于距离为信号频率变化,对应的波数也会发生变化,而且波数分量是由波数的非线性变化得到,所以对于均分的快时间和慢时间,对应的kx,ky的间隔是不均匀的,为此需要进行插值处理,使不均匀的kx,ky间隔均匀。波束指向方向固定,即不同慢时间t下的kx/ky确定,所以首先对于不同的慢时间t,参考中心时刻的ky分量对距离维插值;之后对于不同的快时间\tau,参考最小快时间的kx分量对方位维插值。如此得到相互独立的kx,ky以及对应的信号,此信号的相位为kx的线性相位与ky的线性相位和组成,kx的斜率与目标坐标xp有关,ky的斜率与目标坐标yp有关,通过距离维、方位维FFT处理可以得到最终图像。

二、算法步骤

  

2.1 回波信号获取

 接收的回波信号经过下变频得:

r\left ( \tau ,t \right )=\sigma w_{a}\left ( t\right )w_{r}\left ( \tau -\frac{2R\left ( t \right )}{c} \right )e^{-j\frac{4\pi f_{0}R\left ( t \right )}{c}}e^{j\pi K\left ( \tau-\frac{2R\left ( t \right )}{c} \right )^{2}}\, \, \, \, \, \, \, \, \, \, (1)

其中

### 关于PFA极坐标格式算法的实现方法 #### 算法概述 极坐标格式算法PFA)是一种用于合成孔径雷达(SAR)成像的方法,尤其适用于聚束模式下的SAR处理。该算法首先执行去调频(dechirp)操作以减少信号带宽并降低采样率,在此之后应用范围速度相位(RVP)补偿使距离信号包络一致化。最终阶段是在极坐标系内完成数据插值处理[^2]。 #### 主要步骤解析 ##### Dechirp 处理 Dechirp技术被用来减小原始回波信号中的瞬时频率变化量,从而有效降低了后续处理所需的计算复杂度以及硬件资源需求。这一过程能够显著削减所需的距离向采样速率,进而减轻了系统的负担。 ```matlab % 去调频 (Dechirp) 操作示意代码片段 function dechirped_signal = perform_dechirping(raw_signal, chirp_rate) t = linspace(0, length(raw_signal)-1, length(raw_signal)); phase_shift = exp(-1i * pi * chirp_rate .* t.^2); dechirped_signal = raw_signal .* phase_shift; end ``` ##### RVP 补偿 为了确保所有像素点具有相同的聚焦特性,必须对面阵方向上的多普勒中心频率差异实施校正措施——即所谓的RVP补偿。这项工作旨在消除由于平台运动引起的各次观测间存在的相对位置偏移影响。 ```matlab % 范围速度相位 (RVP) 补偿函数示例 function compensated_data = apply_rvp_compensation(data_matrix, velocity_vector) [rows, cols] = size(data_matrix); for row_idx = 1:rows current_velocity = velocity_vector(row_idx); doppler_phase_correction = exp(-1i * 2*pi*current_velocity.*((cols-1)/2-(1:cols))); data_matrix(row_idx,:) = data_matrix(row_idx,:).*doppler_phase_correction'; end compensated_data = data_matrix; end ``` ##### 插值到极坐标网格 当完成了上述预处理流程后,则可依据实际应用场景构建相应的极坐标映射关系,并据此调整输入图像的空间分布形式;通常采用双线性或其他高级别的重采样策略来提高重建质量。 ```matlab % 将笛卡尔坐标转换为极坐标的插值程序段 function polar_image = cartesian_to_polar_interpolation(cartesian_image, center_point, radius_range, angle_resolution) cart_x_size = size(cartesian_image, 2); cart_y_size = size(cartesian_image, 1); [X,Y] = meshgrid(linspace(-cart_x_size/2,cart_x_size/2,cart_x_size),linspace(-cart_y_size/2,cart_y_size/2,cart_y_size)); rho = sqrt(X.^2 + Y.^2); theta = atan2(Y,X); polar_rho = linspace(min(radius_range), max(radius_range), round(max(abs(rho)))); polar_theta = linspace(-pi, pi, ceil(360 / angle_resolution))'; [rho_grid,theta_grid] = ndgrid(polar_rho,polar_theta); X_new = rho_grid .* cos(theta_grid); Y_new = rho_grid .* sin(theta_grid); polar_image = interp2(X(:)',Y(:)',double(cartesian_image),'linear',NaN); polar_image = reshape(polar_image,size(rho_grid)); % 中心点平移到指定位置 shift_amount = [-center_point(2)+size(polar_image,1)/2,-center_point(1)+size(polar_image,2)/2]; polar_image = circshift(polar_image,round(shift_amount)); end ```
评论 46
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

【杨(_> <_)】

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值