分数傅里叶变换

本文介绍了分数傅里叶变换在信号处理中的应用,重点讲解了它如何处理线性调频信号(chirp),并与传统时域、频域分析进行对比,突出了其在表示chirp信号参数上的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系列文章目录

SAR信号处理重要工具-傅里叶变换


文章目录

前言

一、线性调频信号来源

二、时域、频域及分数域分析对比

总结


前言

        按照个人理解,目前的信号处理手段主要在基于傅里叶变换的频域上进行分析,包括信号的采样、滤波、参数估计。其中信号的采样需要满足频域上的奈奎斯特定理,即采样率大于信号频域带宽的两倍(基带实信号);滤波处理,从频域角度去除噪声或干扰;参数估计,通过估计频点进而得到与频点有关的参数信息。本文将介绍另一种变换域分析方法——分数傅里叶域,其对应的分数傅里叶变换可以认为是傅里叶变换的扩展版本,相比于傅里叶变换的余弦基函数,分数傅里叶变换的基函数是线性调频函数。


一、线性调频信号来源

       我们都知道电磁波以及声波在介质中传播会产生多普勒效应,光的传播过程会发生折射、衍射现象。这些效应或现象都会产生chirp信号,而这些chirp信号的参数与引起这些现象的特定物理参量有着密切关联。

        以多普勒效应为例,波在波源移向观察者时接收频率变高,而在波源远离观察者时接收频率变低,因此针对匀变速运动的物体,多普勒信号为chirp信号,也称为线性调频信号,此时,chirp信号的调频率对应着引发多普勒效应的目标加速度,频率对应着速度。由此通过估计chirp信号的参数可以实现目标运动参数的估计。

二、时域、频域及分数域分析对比

       那如何表示chirp信号呢?左图是chirp信号的时域表征,右图是chirp信号的频域表征。可以看出这两种表达方式都不能很好的展示chirp信号的参数特征。需要探索一种合适的表征方法。

       首先观察chirp信号的时域表达式,发现表达式相位包含时间的二次项,因此chirp信号时频是耦合的,可以采用时频分析的方法分析chirp信号。短时傅里叶变换是一种常见的时频分析方法。从时频图可以看出,短时傅里叶变换能够反映chirp信号时频线性变化的规律,且斜率反映了chirp信号的调频率。但是,chirp信号的时频图能量不集中,未能充分表达chirp信号的参数信息。此外,难以估计除频率、调频率以外的信息。因此需要尝试其他时频分析方法。

 

        而分数傅里叶变换是特别适合分析chirp信号的时频分析工具,为什么这么说呢?先来看chirp信号在时域、频域以及特定阶次分数域上的表征结果。可以看出chirp信号在特定阶次分数域上能量分布集中,其能量分布峰值点处包含了chirp信号的调频率、频率、初相以及幅值信息。

代码见:信号处理+分数傅里叶变换+分数域分析


总结

        本文对分数傅里叶变换进行了简单的科普性介绍,针对chirp信号,对比其在时域、频域、时频域以及分数域上的表现形式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

【杨(_> <_)】

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值