各种期望与概率

各种概率与期望

2016-03-05 16:28:32  By  zgjkt

初中课本知识已经有讲概率啦!应用在信息学里面可以这样↓

我们现在假装要从出生点出发去新日 暮里,有两种方法

  1. 老司机开车带我们去,费用是一千软妹币,绝对不翻车

  2. 年轻司机开车带我们去,费用是一百软妹币,但是有 0.5 0.5的概率会翻车被查。因此我们要回到出生点,此时只能让老司机带我们飞【捂眼

上谁的车呢?思考熊

权衡利弊之后,我们应当先上年轻司机的车试试看

此时年轻司机有 0.5 0.5的概率成功,期望是 0.5×100=50 0.5×100=50

另外, 0.5 0.5的概率是年轻司机被查之后我们去找老司机帮忙,期望是 0.5×(100+1000)=550 0.5×(100+1000)=550

那么最终期望就是 550+50=600 550+50=600



【bzoj4318】 OSU! OSU!——初步接触期望 dp dp

题目大意

给定一个数列 S S,长度为 n n

给出 ai ai Si Si ai ai的概率是 1 1,否则是 0 0

如果得分是数列 S S中所有连在一起的 1 1的长度的立方和,询问得分的期望

数据范围

n100000,0ai1 n⩽100000,0⩽ai⩽1


题解

设转移到 Si Si时, S1,S2...Si1 S1,S2...Si−1中连在一起的 1 1的最长后缀长度为 x x

易证,如果 Si=0 Si=0,则贡献为 0 0,如果 Si=1 Si=1,则贡献为 (x+1)3x3=3x2+3x+1 (x+1)3−x3=3x2+3x+1

只需要考虑对答案有所影响的情况

因此只要考虑,当 Si=1 Si=1时, x2 x2 x x的期望加起来,转移到 Si+1 Si+1的期望即可


代码

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define maxn 100500
#define For(i,l,r) for(int i=l;i<=r;i++)
using namespace std;

int n;
double f[maxn],dp[maxn],x1[maxn],x2[maxn];

int main(){
    scanf("%d\n",&n);
    For(i,1,n) scanf("%lf",&f[i]);
    For(i,1,n){
        x1[i]=(x1[i-1]+1)*f[i];
        x2[i]=(x2[i-1]+2*x1[i-1]+1)*f[i];
        dp[i]=dp[i-1]+(3*x2[i-1]+3*x1[i-1]+1)*f[i];
    }
    printf("%.1lf\n",dp[n]);
    return 0;
}

类似的题目可以参考不稳定的传送门



【bzoj1415】【noi2005】聪聪和可可——图论上的概率 dp dp

题目大意

数据范围

保证无向图且无重边

N,E1000 N,E⩽1000


题解

先进行 n n BFS BFS预处理出 p[i,j] p[i,j],表示聪聪在点 i i且可可在点 j j时,聪聪的最优策略第一步应去的点的编号(最短路)

由于聪聪被允许每次走两步,为了方便解题,我们把两步并作一步。聪聪为了吃掉可可,会这样移动 i  p[p[i,j],j] i → p[p[i,j],j]

而可可完全不知所措 ,每次会移动到点 j j的临近任意一个点 w w,或者乖乖 站好,概率都是 1degreej+1 1degreej+1

弄清楚聪聪和可可应该会怎么转移,就可以得到所有的情况

我们用 f[i,j] f[i,j]表示聪聪在点 i i,可可在点 j j时聪聪抓住可可的平均步数

开始考虑边界条件

当然, f[i,i]=0 f[i,i]=0,因为聪聪和可可已经在同一个点。

p[p[i,j],j]=j or p[i,j]=j p[p[i,j],j]=j or p[i,j]=j时,则说明在这一步聪聪即可吃掉可可,那么 f[i,j]=1 f[i,j]=1

结合起来,得到图论上的概率dp的状态转移方程

状态转移方程就是

f[i,j]=degreejf[p[p[i,j],j],w]+f[p[p[i,j],j],w]degreej+1+1 f[i,j]=∑degreejf[p[p[i,j],j],w]+f[p[p[i,j],j],w]degreej+1+1

Tips: Tips:聪聪每次是走两步,因此在状态转移方程的最后还要加上 1 1


程序

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#define For(i,l,r) for(int i=l;i<=r;i++)
#define goedge(i,x) for(int i=last[x];i;i=e[i].next)
#define maxn 1050
using namespace std;
inline int read(){
    int x=0,f=1;char ch=getchar();
    while (ch<'0'&&ch>'9') {if (ch=='-') f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9') {x=x*10+ch-48;ch=getchar();}
    return x*f;
}

int n,m,c,k,et;
struct edge{int to,next;}e[2*maxn];
int last[maxn],dis[maxn][maxn];
int t[maxn],p[maxn][maxn];
double f[maxn][maxn];

inline void addedge(int u,int v){
    e[++et]=(edge){v,last[u]};last[u]=et;
    e[++et]=(edge){u,last[v]};last[v]=et;
    t[u]++,t[v]++;
}
inline void bfs(int x){
    queue <int> q;
    q.push(x);dis[x][x]=0;
    while (!q.empty()){
        int h=q.front(),tmp=p[x][h];q.pop();
        goedge(i,h)
            if (dis[x][e[i].to]==-1||(dis[x][h]+1==dis[x][e[i].to]&&tmp<p[x][e[i].to])){
                dis[x][e[i].to]=dis[x][h]+1;
                if (!tmp) p[x][e[i].to]=e[i].to;
                else p[x][e[i].to]=tmp;
                q.push(e[i].to); 
            }
    }
}
double dp(int x,int y){
    if (f[x][y]) return f[x][y];
    if (x==y) return f[x][y]=0;
    if (p[x][y]==y||p[p[x][y]][y]==y) return f[x][y]=1;
    double sum=dp(p[p[x][y]][y],y);
    goedge(i,y) sum+=dp(p[p[x][y]][y],e[i].to);
    return f[x][y]=sum/(t[y]+1)+1; 
}

int main(){
    n=read(),m=read(); 
    c=read(),k=read();
    For(i,1,m) addedge(read(),read());
    memset(dis,-1,sizeof(dis));
    For(i,1,n) bfs(i);
    printf("%.3lf\n",dp(c,k));
    return 0;
}

感谢《浅析竞赛中一类数学期望问题的解决方法》对我的启发



【poj3744】Scout YYF I——矩阵乘法优化概率 dp dp

题目大意

给出一个埋着 n n颗地雷的道路,起始在道路的起点 1 1

给出概率 p p会往前走一步,否则走两步

也给出每颗地雷的位置,询问安全通过这条道路的概率(保留 7 7位小数)

数据范围

1n10,0.25p0.75 1⩽n⩽10,0.25⩽p⩽0.75

地雷的位置在 [1,100000000] [1,100000000]之中


题解

dp[i] dp[i]表示安全走到 i i点的概率,则有 dp[i]=p×dp[i1]+(1p)×dp[i2] dp[i]=p×dp[i−1]+(1−p)×dp[i−2]

得出概率 DP DP方程之后,发现这是类似于 Fibonacci Fibonacci数列一样的常系数线性递推式,因此可以用矩阵乘法来优化概率 DP DP,形式上来说就是

[p1p10]×[dp[i1]dp[i2]00]=[dp[i]dp[i1]00] [pp−110]×[dp[i−1]0dp[i−2]0]=[dp[i]0dp[i−1]0]

然后把整条道路分段,每段中只有一个地雷(计算时应使地雷在每一段的末尾),然后通过矩阵乘法优化概率 DP DP递推得到在这一段中踩到地雷的概率 (K) (K),也就得到安全通过这段道路的概率 (1K) (1−K),最后把安全通过每段道路的概率乘起来就是答案


程序

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define For(i,l,r) for(int i=l;i<=r;i++)
using namespace std;
inline int read(){
    int x=0,f=1;char ch=getchar();
    while (ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9') {x=x*10+ch-48;ch=getchar();}
    return x*f;
}

int n,mine[20];
double a[3][3],ans[3][3];
double p,sum;
inline void mul(double a[3][3],double b[3][3],double result[3][3]){
    double c[3][3];memset(c,0,sizeof(c));
    For(i,1,2) For(j,1,2)
        For(p,1,2) c[i][j]+=a[i][p]*b[p][j];
    For(i,1,2) For(j,1,2) result[i][j]=c[i][j];
}

inline double count(int t){
    a[1][1]=p,a[1][2]=1-p,a[2][1]=1,a[2][2]=0;
    ans[1][1]=1,ans[1][2]=ans[2][1]=ans[2][2]=0;
    while (t){
        if (t&1) mul(ans,a,ans);
        t>>=1;mul(a,a,a);
    }
    return ans[1][1];
}
int main(){
    while (scanf("%d%lf",&n,&p)!=EOF){
        For(i,1,n) mine[i]=read();
        sort(mine+1,mine+n+1);
        sum=1;
        For(i,0,n-1) sum=sum*(1-count(mine[i+1]-mine[i]-1));
        printf("%.7lf\n",sum);
    }
    return 0;
}

如何用矩阵乘法优化常系数线性递推式

fyh fyh讲课的内容,推广一下 unifyh unifyh的博客

常系数线性递推式就是对于一个数列,满足递推关系: An=C1An1+C2An2++CkAnk+C0 An=C1An−1+C2An−2+…+CkAn−k+C0(其中 C1,C2Ck,C0 C1,C2…Ck,C0是常数)

因为矩阵乘法满足结合律,因此可以构造一个 (k+1)×(k+1) (k+1)×(k+1)的矩阵,快速幂优化递推,形式上来说就是

C1100000C2010000C3001100Ck2000100Ck1000010Ck000000C00000001×An1An2An3Ank+2Ank+1Ank1=AnAn1An2Ank+3Ank+2Ank+11 [C1C2C3⋯Ck−2Ck−1CkC0100⋯0000010⋯0000001⋯0000⋮⋮⋮⋱⋮⋮⋮0001⋯1000000⋯0100000⋯0001]×[An−1An−2An−3⋮An−k+2An−k+1An−k1]=[AnAn−1An−2⋮An−k+3An−k+2An−k+11]

应用这个方法的题目还有:【poj3070】Fibonacci



完结撒花!!!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值