高数习题9.1

  1. 指出下列微分方程的阶:
    (1) d y d x = x y 2 + y 6 \frac{dy}{dx}=xy^2+y^6 dxdy=xy2+y6;一阶
    (2) ( y ′ ′ ) 2 + 2 ( y ′ ) 6 − x 5 = 0 (y'')^2+2(y')^6-x^5=0 (y)2+2(y)6x5=0;二阶
    (3) y ′ ′ ′ + 2 ( y ′ ′ ) 3 + y 2 + x 5 = 0 y'''+2(y'')^3+y^2+x^5=0 y+2(y)3+y2+x5=0;三阶
  2. 指出下列函数中的任意常数是否独立?
    (1) y = C 1 c o s a x + C 2 s i n a x ( a > 0 ) y=C_1cosax+C_2sinax(a>0) y=C1cosax+C2sinax(a>0)
    (2) y = C 1 ( 1 − c o s 2 x ) + C 2 s i n 2 x y=C_1(1-cos2x)+C_2sin^2x y=C1(1cos2x)+C2sin2x
    (3) y = C 1 e λ 1 x + C 2 e λ 2 x , ( λ 1 ≠ λ 2 ) y=C_1e^{\lambda_1x}+C_2e^{\lambda_2x},(\lambda_1\neq\lambda_2) y=C1eλ1x+C2eλ2x,(λ1=λ2)
    (4) y = C 1 e λ x + C 2 x e λ x y=C_1e^{\lambda x}+C_2xe^{\lambda x} y=C1eλx+C2xeλx
    (5) y = C 1 x + C 2 x 2 + C 3 ( x 2 + x ) y=C_1x+C_2x^2+C_3(x^2+x) y=C1x+C2x2+C3(x2+x).
    解:
    (1) ∣ c o s a x s i n a x − a s i n a x a c o s a x ∣ = a 2 \begin{vmatrix}cosax & sinax\\-asinax & acosax\\\end{vmatrix}=a^2 cosaxasinaxsinaxacosax=a2,独立
    (2) ∣ 1 − c o s 2 x s i n 2 x 2 s i n 2 x 2 s i n x c o s x ∣ = 0 \begin{vmatrix}1-cos2x & sin^2x\\2sin2x & 2sinxcosx\\\end{vmatrix}=0 1cos2x2sin2xsin2x2sinxcosx=0,不独立
    (3) ∣ e λ 1 x e λ 2 x λ 1 e λ 1 x λ 2 e λ 2 x ∣ = ( λ 2 − λ 1 ) e ( λ 1 + λ 2 ) x ≠ 0 \begin{vmatrix}e^{\lambda_1x} & e^{\lambda_2x}\\\lambda_1e^{\lambda_1x} & \lambda_2e^{\lambda_2x}\\\end{vmatrix}=(\lambda_2-\lambda_1)e^{(\lambda_1+\lambda_2)x}\neq0 eλ1xλ1eλ1xeλ2xλ2eλ2x=(λ2λ1)e(λ1+λ2)x=0,独立
    (4) ∣ e λ x x e λ x λ e λ x ( 1 + λ x ) e λ x ∣ = e λ x \begin{vmatrix}e^{\lambda x} & xe^{\lambda x}\\\lambda e^{\lambda x} & (1+\lambda x) e^{\lambda x}\\\end{vmatrix}=e^{\lambda x} eλxλeλxxeλx(1+λx)eλx=eλx,独立
    (5) ∣ x x 2 x 2 + x 1 2 x 2 x + 1 0 2 2 ∣ = 0 \begin{vmatrix}x & x^2 & x^2+x\\1 & 2x &2x+1\\0 & 2 &2\\\end{vmatrix}=0 x10x22x2x2+x2x+12=0,不独立
  3. 验证下列函数是响应的微分方程的解,是特解还是通解?
    (1) y = s i n 2 x . y ′ ′ + 4 y = 0 y=sin2x.y''+4y=0 y=sin2x.y+4y=0
    (2) y = C 1 c o s a x + C 2 s i n a x , y ′ ′ + a 2 y = 0 ( a > 0 ) y=C_1cosax+C_2sinax,y''+a^2y=0(a>0) y=C1cosax+C2sinax,y+a2y=0(a>0)
    (3) y = C 1 e λ 1 x + C 2 e λ 2 x , y ′ ′ − ( λ 1 + λ 2 ) y ′ + λ 1 λ 2 y = 0 , ( λ 1 ≠ λ 2 ) y=C_1e^{\lambda_1x}+C_2e^{\lambda_2x},y''-(\lambda_1+\lambda_2)y'+\lambda_1\lambda_2y=0,(\lambda_1\neq\lambda_2) y=C1eλ1x+C2eλ2x,y(λ1+λ2)y+λ1λ2y=0,(λ1=λ2)
    (4) y = C 1 e λ x + C 2 x e λ x , y ′ ′ + 2 λ y ′ + λ 2 y = 0 y=C_1e^{\lambda x}+C_2xe^{\lambda x},y''+2\lambda y'+\lambda^2y=0 y=C1eλx+C2xeλx,y+2λy+λ2y=0
    (5) y = C e 3 x ( C 为 任 意 常 数 ) , y ′ ′ − 9 y = 0 y=Ce^{3x}(C为任意常数),y''-9y=0 y=Ce3x(C),y9y=0;
    (6) y = x ( ∫ 1 x e x x d x + C ) , x y ′ − y = x e x . y=x(\int_1^x\frac{e^x}{x}dx+C),xy'-y=xe^x. y=x(1xxexdx+C),xyy=xex.
    解:
    (1) ( s i n 2 x ) ′ ′ + 4 ( s i n 2 x ) = 0 (sin2x)''+4(sin2x)=0 (sin2x)+4(sin2x)=0,成立。
    方程阶数为2,参数数量为0,所以为特解
    (2) ( C 1 c o s a x + C 2 s i n a x ) ′ ′ + a 2 ( C 1 c o s a x + C 2 s i n a x ) = 0 (C_1cosax+C_2sinax)''+a^2(C_1cosax+C_2sinax)=0 (C1cosax+C2sinax)+a2(C1cosax+C2sinax)=0
    ∣ c o s a x s i n a x − a s i n a x a c o s a x ∣ = a 2 \begin{vmatrix}cosax & sinax\\-asinax & acosax\\\end{vmatrix}=a^2 cosaxasinaxsinaxacosax=a2,通解
    (3) ( C 1 e λ 1 x + C 2 e λ 2 x ) ′ ′ − ( λ 1 + λ 2 ) ( C 1 e λ 1 x + C 2 e λ 2 x ) ′ + λ 1 λ 2 ( C 1 e λ 1 x + C 2 e λ 2 x ) = 0 (C_1e^{\lambda_1x}+C_2e^{\lambda_2x})''-(\lambda_1+\lambda_2)(C_1e^{\lambda_1x}+C_2e^{\lambda_2x})'+\lambda_1\lambda_2(C_1e^{\lambda_1x}+C_2e^{\lambda_2x})=0 (C1eλ1x+C2eλ2x)(λ1+λ2)(C1eλ1x+C2eλ2x)+λ1λ2(C1eλ1x+C2eλ2x)=0
    ∣ e λ 1 x e λ 2 x λ 1 e λ 1 x λ 2 e λ 2 x ∣ = ( λ 2 − λ 1 ) e ( λ 1 + λ 2 ) x ≠ 0 \begin{vmatrix}e^{\lambda_1x} & e^{\lambda_2x}\\\lambda_1e^{\lambda_1x} & \lambda_2e^{\lambda_2x}\\\end{vmatrix}=(\lambda_2-\lambda_1)e^{(\lambda_1+\lambda_2)x}\neq0 eλ1xλ1eλ1xeλ2xλ2eλ2x=(λ2λ1)e(λ1+λ2)x=0,通解
    (4) ( C 1 e λ x + C 2 x e λ x ) ′ ′ + 2 λ ( C 1 e λ x + C 2 x e λ x ) ′ + λ 2 ( C 1 e λ x + C 2 x e λ x ) = 0 (C_1e^{\lambda x}+C_2xe^{\lambda x})''+2\lambda (C_1e^{\lambda x}+C_2xe^{\lambda x})'+\lambda^2(C_1e^{\lambda x}+C_2xe^{\lambda x})=0 (C1eλx+C2xeλx)+2λ(C1eλx+C2xeλx)+λ2(C1eλx+C2xeλx)=0
    ∣ e λ x x e λ x λ e λ x ( 1 + λ x ) e λ x ∣ = e λ x \begin{vmatrix}e^{\lambda x} & xe^{\lambda x}\\\lambda e^{\lambda x} & (1+\lambda x) e^{\lambda x}\\\end{vmatrix}=e^{\lambda x} eλxλeλxxeλx(1+λx)eλx=eλx,通解
    (5) ( C e 3 x ) ′ ′ − 9 ( C e 3 x ) = 0 (Ce^{3x})''-9(Ce^{3x})=0 (Ce3x)9(Ce3x)=0
    方程阶数为2,参数数量为1,所以既非特解也非通解
    (6) x [ x ( ∫ 1 x e x x d x + C ) ] ′ − x ( ∫ 1 x e x x d x + C ) = x ( ∫ 1 x e x x d x + C + e x ) − x ( ∫ 1 x e x x d x + C ) = x e x x[x(\int_1^x\frac{e^x}{x}dx+C)]'-x(\int_1^x\frac{e^x}{x}dx+C)=x(\int_1^x\frac{e^x}{x}dx+C+e^x)-x(\int_1^x\frac{e^x}{x}dx+C)=xe^x x[x(1xxexdx+C)]x(1xxexdx+C)=x(1xxexdx+C+ex)x(1xxexdx+C)=xex
    ∣ x ∣ = x \begin{vmatrix}x\\\end{vmatrix}=x x=x不恒为0,所以为特解
  4. 验证函数 x ( t ) = c o s t + 2 s i n t − 2 t c o s t x(t)=cost+2sint-2tcost x(t)=cost+2sint2tcost是初值问题 { d 2 x d t 2 + x = 4 s i n t x ( 0 ) = 1 , x ′ ( 0 ) = 0 \begin{cases}\frac{d^2x}{dt^2}+x=4sint \\ x(0)=1,x'(0)=0\\ \end{cases} {dt2d2x+x=4sintx(0)=1,x(0)=0的解.
    解:
    d 2 x d t 2 + x = d ( − s i n t + 2 c o s t − 2 c o s t + 2 t s i n t ) d t + c o s t + 2 s i n t − 2 t c o s t = 2 s i n t + ( 2 t − 1 ) c o s t + c o s t + 2 s i n t − 2 t c o s t = 4 s i n t \begin{aligned} \frac{d^2x}{dt^2}+x&=\frac{d(-sint+2cost-2cost+2tsint)}{dt}+cost+2sint-2tcost \\ &= 2sint+(2t-1)cost+cost+2sint-2tcost\\ &= 4sint\\ \end{aligned} dt2d2x+x=dtd(sint+2cost2cost+2tsint)+cost+2sint2tcost=2sint+(2t1)cost+cost+2sint2tcost=4sint
    x ( 0 ) = c o s 0 + 2 s i n 0 − 2 ∗ 0 ∗ c o s 0 = 1 , x ′ ( 0 ) = − s i n 0 + 2 c o s 0 − 2 c o s 0 + 2 ∗ 0 ∗ s i n 0 = 0 x(0)=cos0+2sin0-2*0*cos0=1,x'(0)=-sin0+2cos0-2cos0+2*0*sin0=0 x(0)=cos0+2sin020cos0=1,x(0)=sin0+2cos02cos0+20sin0=0
  5. 求下列初值问题的解:
    (1) { d x d t = c o s ω t ( ω ≠ 0 , 为 常 数 ) x ( 0 ) = 10 ; \begin{cases}\frac{dx}{dt}=cos\omega t(\omega\neq0,为常数)\\x(0)=10;\\ \end{cases} {dtdx=cosωt(ω=0,)x(0)=10;
    (2) { d 2 y d x 2 = 12 x 2 , y ( 0 ) = 0 , y ′ ( 0 ) = 1 ; \begin{cases}\frac{d^2y}{dx^2}=12x^2,\\y(0)=0,y'(0)=1;\\ \end{cases} {dx2d2y=12x2,y(0)=0,y(0)=1;
    (3) { y ′ ′ ′ = x y ( 0 ) = a 0 , y ′ ( 0 ) = a 1 , y ′ ′ ( 0 ) = a 2 . \begin{cases}y'''=x\\y(0)=a_0,y'(0)=a_1,y''(0)=a_2.\\ \end{cases} {y=xy(0)=a0,y(0)=a1,y(0)=a2.
    解:
    (1)
    d x d t = c o s ω t x = s i n ω t ω + C \begin{aligned} \frac{dx}{dt}&=cos\omega t\\ x &= \frac{sin\omega t}{\omega}+C\\ \end{aligned} dtdxx=cosωt=ωsinωt+C
    x ( 0 ) = 10 x(0)=10 x(0)=10代入,得到 C = 10 C=10 C=10
    解为 x = s i n ω t ω + 10 x=\frac{sin\omega t}{\omega}+10 x=ωsinωt+10
    (2)
    d 2 y d x 2 = 12 x 2 d y d x = 4 x 3 + C 1 y = x 4 + C 1 x + C 2 \begin{aligned} \frac{d^2y}{dx^2}&=12x^2\\ \frac{dy}{dx} &= 4x^3+C_1\\ y &= x^4+C_1x+C_2\\ \end{aligned} dx2d2ydxdyy=12x2=4x3+C1=x4+C1x+C2
    y ( 0 ) = 0 , y ′ ( 0 ) = 1 y(0)=0,y'(0)=1 y(0)=0,y(0)=1代入,得到 C 1 = 1 , C 2 = 0 C_1=1,C_2=0 C1=1,C2=0
    解为 y = x 4 + x . y=x^4+x. y=x4+x.
    (2)
    y ′ ′ ′ = x y ′ ′ = x 2 2 + C 1 y ′ = x 3 6 + C 1 x + C 2 y = x 4 24 + C 1 x 2 2 + C 2 x + C 3 \begin{aligned} y'''&=x\\ y''&=\frac{x^2}{2}+C_1\\ y'&=\frac{x^3}{6}+C_1x+C_2\\ y&=\frac{x^4}{24}+\frac{C_1x^2}{2}+C_2x+C_3\\ \end{aligned} yyyy=x=2x2+C1=6x3+C1x+C2=24x4+2C1x2+C2x+C3
    y ( 0 ) = a 0 , y ′ ( 0 ) = a 1 , y ′ ′ ( 0 ) = a 2 y(0)=a_0,y'(0)=a_1,y''(0)=a_2 y(0)=a0,y(0)=a1,y(0)=a2代入,得到 C 1 = a 2 , C 2 = a 1 , C 3 = a 0 C_1=a_2,C_2=a_1,C_3=a_0 C1=a2,C2=a1,C3=a0
    解为 y = x 4 24 + a 2 x 2 2 + a 1 x + a 0 y=\frac{x^4}{24}+\frac{a_2x^2}{2}+a_1x+a_0 y=24x4+2a2x2+a1x+a0
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值